Introduction to Machine Learning: Methodology and Classification Evaluation

Frank Ferraro – <u>ferraro@umbc.edu</u> CMSC 473/673

Some slides adapted from 3SLP

Outline

Classification (Methodology)

Evaluation

$s = p_{\theta}($

Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

Goal: Learn parameters (weights) θ to develop a scoring function that says how "good" some provided text is

Classify with Uncertainty

best label = arg max P(label|example)label

Use probabilities*

*There are non-probabilistic ways to handle uncertainty... but probabilities sure are handy!

Classification

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

POLITICS	.05
TERRORISM	.48
SPORTS	.0001
Travi	20
IECH	.39
HEALTH	.39
IECH HEALTH FINANCE	.39 .0001 .0002

....

Source: http://www.nytimes.com/2016/09/20/nyregion/cellphone-alerts-used-in-search-of-manhattan-bombing-suspect.html

Reminder!	Classification Types (Terminology)				
	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example		
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}		
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}		
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}		
Multi-task Classification	> 1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling Task 2: sentiment		

Outline

Classification (Methodology)

Evaluation

What is "correct?" What is working "well?"

What is "correct?"

What is working "well?"

What is "correct?"

What is working "well?"

using the hyperparameters that optimized dev performance and *retraining* the model

What is "correct?"

What is working "well?"

retraining the model

Rule 1: DO NOT ITERATE ON THE TEST DATA

train_split, dev_split, test_split = split_data(corpus)
best_score, best_hp = None, None

train_split, dev_split, test_split = split_data(corpus)
best_score, best_hp = None, None
for hp in hyperparameter_config():
 model = make_model(hp)
 model.train(train_split)

```
train_split, dev_split, test_split = split_data(corpus)
best_score, best_hp = None, None
for hp in hyperparameter_config():
   model = make_model(hp)
   model.train(train_split)
   score = model.evaluate(dev_split)
   if score > best_score:
        best_score = score
        best_hp = hp
```

```
train_split, dev_split, test_split = split data(corpus)
best score, best hp = None, None
for hp in hyperparameter config():
 model = make model(hp)
 model.train(train split)
  score = model.evaluate(dev_split)
  if score > best score:
    best score = score
    best hp = hp
best model = make model(best hp)
best model.train(train split)
test score = best model.evaluate(test split)
```

A More Realistic Train-Dev-Test Cycle

train_split, dev_split, test_split = split_data(corpus)

```
if is training:
  best score, best hp = None, None
  for hp in hyperparameter config():
    model = make model(hp)
    model.train(train split)
    score = model.evaluate(dev split)
    if score > best score:
      best score = score
      best hp = hp
      model.save to disk()
else:
  model = load from disk()
  test score = model.evaluate(test split)
```

A More Realistic Train-Dev-Test Cycle

train_split, dev_split, test_split = split_data(corpus)

```
if is_training:
  best score, best hp = None, None
  for hp in hyperparameter config():
    model = make model(hp)
    model.train(train split)
    score = model.evaluate(dev split)
    if score > best_score:
      best_score = score
      best hp = hp
      model.save_to_disk()
else:
  model = load from disk()
```

test_score = model.evaluate(test_split)

Split the training/dev and test cycles! (Training can sometimes take a while.)

A More Realistic Train-Dev-Test Cycle

```
train_split, dev_split, test_split =
split_data(corpus)
```

```
if is_training:
    best_score, best_hp = None, None
    for hp in hyperparameter_config():
    model = make_model(hp)
    model.train(train_split)
    score = model.evaluate(dev_split)
    if score > best_score:
        best_score = score
        best_hp = hp
        model.save_to_disk()
else:
    model = load from disk()
```

```
test_score = model.evaluate(test_split)
```

- <u>https://pytorch.org/tutorials/beg</u> <u>inner/basics/optimization_tutori</u> <u>al.html</u>
- <u>https://pytorch.org/tutorials/beg</u> <u>inner/basics/saveloadrun_tutoria</u> <u>l.html</u>

Central Question: How Well Are We Doing?

Central Question: How Well Are We Doing?

Training Loss vs. Evaluation Score

In training, compute loss to update parameters

Sometimes loss is a computational compromise - surrogate loss

The loss you use might not be as informative as you'd like

Binary classification: 90 of 100 training examples are +1, 10 of 100 are -1

Some Classification Metrics

Accuracy

Precision Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Classification Evaluation: the 2-by-2 contingency table				
	What is the actual label?			
What label does our system predict? (\downarrow)	Actual Target Class ("●")	Not Target Class ("○")		
Selected/ Guessed ("●")				
Not selected/				
not guessed				

Construct this table by *counting* the number of TPs, FPs, FNs, TNs

Contingency Table Example Predicted: Actual:

Contingency Table Example				
Predicted:		\bigcirc		
Actual:		\bigcirc \bigcirc		
	What is the a	ictual label?		
What label does our system predict? (\downarrow)	Actual Target Class ("●")	Not Target Class ("○")		
Selected/ Guessed ("●")	True Positive (TP)	False Positive (FP)		
Not selected/ not guessed ("○")	False Negative (FN)	True Negative (TN)		

Contingency Table Example						
Predicted:						
Actual:		\bigcirc \bigcirc				
	What is the actual label?					
What label does our system predict? (\downarrow)	Actual Target Class ("●")	Not Target Class ("○")				
Selected/ Guessed ("●")	True Positive (TP) = 2	False Positive (FP)				
Not selected/ not guessed ("○")	False Negative (FN)	True Negative (TN)				

Contingency Table Example							
Predicted:	\bigcirc				\bigcirc		
Actual:				\bigcirc	\bigcirc	0	
	What is the actual label?						
What label does our system predict? (\downarrow)	Actual Target Class ("●")			Not Target Class ("○")			
Selected/ Guessed ("●")	True Positive (TP) = 2			False Positive (FP) = 2			
Not selected/ not guessed ("○")	False Negative (FN)			True Negative (TN)			
Contingency Table Example							
--	---------------------------	------------	------------	-----------------------	--	--	
Predicted:							
Actual:			\bigcirc	\bigcirc			
	What is the actual label?						
What label does our system predict? (\downarrow)	Actual Targe ("●")	t Class	Not	Target Class ("○")			
Selected/ Guessed ("●")	True Pos (TP) =	itive 2	Fals (e Positive FP) = 2			
Not selected/ not guessed ("○")	False Neg (FN) =	ative 1	True	e Negative (TN)			

Contingency Table Example					
Predicted:	\bigcirc			\bigcirc	
Actual:			\bigcirc	\bigcirc	\bigcirc
		What i	s the c	actual	label?
What label does our system predict? (\downarrow)	Actual Target Class ("●")			Not	Target Class ("○")
Selected/ Guessed ("●")	True Positive (TP) = 2			Fals (FP) = 2
Not selected/ not guessed ("○")	False Negative (FN) = 1			True (e Negative TN) = 1

Contingency Table Example					
Predicted:	$\bigcirc \bullet \bullet \bullet \bigcirc \bullet$				
Actual:			\bigcirc	\bigcirc	\bigcirc
		What is	the c	actual	label?
What label does our system predict? (\downarrow)	Actual Target Class ("•")			Not	Target Class ("○")
Selected/ Guessed ("●")	True Positive (TP) = 2			Fals (se Positive (FP) = 2
Not selected/ not guessed ("○")	False Negative (FN) = 1		True (e Negative TN) = 1	

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct $\frac{TP + TN}{TP + FP + FN + TN}$

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct TP + TNTP + FP + FN + TN**Precision**: % of selected items that are correct TP TP + FP

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

The Importance of "Polarity" in Binary Classification

Fundamentally: what are you trying to "identify" in your classification?

Are you trying to find \bigcirc or \bigcirc ?

The Importance of "Polarity" in Binary Classification

Try to find : Where do the TP / FP / FN / FN values go?

The Importance of "Polarity" in Binary Classification

What are the accuracy, recall, and precision values?

precision values?

Precision: 50%

The Importance of "Polarity" in Binary Classification

Try to find \bigcirc : Where do the TP / FP / FN / FN values go?

The Importance of "Polarity" in Binary Classification

What are the accuracy, recall, and precision values?

What are the accuracy, recall, and precision values?

Accuracy: 50% Recall: 33.34% Precision: 50%

The Importance of "Polarity" in Binary Classification

Remember: what are you trying to "identify" in your classification?

Q: Where do you want your ideal model ?

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

 Computing the curve
You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall

2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

A combined measure: F

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

$$F_1 = \frac{2 * P * R}{P + R}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

$$F_1 = \frac{2 * P * R}{P + R} = \frac{2 * T P}{2 * T P + F P + F N}$$

(useful when P = R = 0)

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average. $1 \sum_{n=1}^{\infty} TP = 1 \sum_{n=1}^{\infty} TP =$

macroprecision =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$$

macrorecall =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FN}_{c}} = \frac{1}{C} \sum_{c} \text{recall}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$
$$microrecall = \frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

when to prefer microaveraging?

when to prefer

macroaveraging?

ng

But how do we compute stats for multiple classes?

• We already saw how the "polarity" affects the stats we compute...

Two main approaches. Either:

- 1. Compute "one-vs-all" 2x2 tables. OR
- Generalize the 2x2 tables and compute perclass TP / FP / FN based on the diagonals and off-diagonals

1. Compute "one-vs-all" 2x2 tables							
Pre Act	dicted	0 0					
Look for	Actually Target	Actı Not T	ially arget	Loc	ok for	Actually Target	Actually Not Target
Selected/G uessed	True Positive (TP)	Fa Positiv	lse ve (FP)	Seleo ue	cted/G ssed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	Tr Nega (T	ue ative N)	N sele gue	lot ct/not essed	False Negative (FN)	True Negative (TN)
Look for Actually Actually Target Not Target							

	Target	Not Target
Selected/G	True	False
uessed	Positive (TP)	Positive (FP)
Not	False	True
select/not	Negative	Negative
guessed	(FN)	(TN)

1. Compute "one-vs-all" 2x2 tables						
Pre Act	dicted					
Look for	Actually Target	Actually Not Target	Look for	Actually Target	Actually Not Target	
Selected/G uessed	2	1	Selected/G uessed	2	1	
Not select/not guessed	2	4	Not select/not guessed	1	5	

Look for	Actually Target	Actually Not Target
Selected/G uessed	1	2
Not select/not guessed	1	5

2. Generalizing the 2-by-2 contingency table

How do you compute TP_{\frown} ?

How do you compute TP_{\frown} ?

How do you compute FN_{\frown} ?

How do you compute FN_{\bigcirc} ?

How do you compute FP_{\Box} ?

How do you compute FP_{\Box} ?

This is also called a **Confusion Matrix**

Q: Is this a good result?

Q: Is this a good result?

Q: Is this a good result?

Some Classification Metrics

Accuracy

Precision Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Outline

Classification (Methodology)

Evaluation