Introduction to Machine Learning: Methodology and Classification Evaluation

Frank Ferraro - ferraro@umbc.edu
 CMSC 473/673

Outline

Classification (Methodology)

Evaluation

Michael Jordan, coach Phil

$s=p_{\theta}$Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

Goal: Learn parameters (weights) θ to develop a scoring function that says how "good" some provided text is

Classify with Uncertainty

best label $=\underset{\text { label }}{\arg \max } P($ label \mid example $)$

Use probabilities*

Classification

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

Politics

. 05

TERRORISM

Sports

Tech

Classification Types (Terminology)
$\left.\begin{array}{|c|c|c|c|}\hline & \begin{array}{c}\text { Number of } \\ \text { Tasks } \\ \text { (Domains) } \\ \text { Labels are } \\ \text { Associated with }\end{array} & \text { \# Label Types } & \text { Example } \\ \hline \text { (Binary) Classification } & 1 & 2 & >2\end{array} \begin{array}{c}\text { Sentiment: Choose one of } \\ \text { \{positive or negative }\}\end{array}\right]$

Outline

Classification (Methodology)

Evaluation

Experimenting with Machine Learning Models

All your data

Rule \#1

Experimenting with Machine Learning Models

What is "correct?" What is working "well?"

Dev
Data

Test

\square training set

Experimenting with Machine Learning Models

What is "correct?"
 What is working "well?"

Experimenting with Machine Learning Models

What is "correct?"
 What is working "well?"

Experimenting with Machine Learning Models

What is "correct?" What is working "well?"

Rule 1: DO NOT ITERATE ON THE TEST DATA

A Simplified Train-Dev-Test Cycle

train_split, dev_split, test_split = split_data(corpus) best_score, best_hp = None, None

A Simplified Train-Dev-Test Cycle

```
train_split, dev_split, test_split = split_data(corpus)
best_score, best_hp = None, None
for hp in hyperparameter_config():
    model = make_model(hp)
    model.train(train_split)
```


A Simplified Train-Dev-Test Cycle

```
train_split, dev_split, test_split = split_data(corpus)
```

best_score, best_hp = None, None
for hp in hyperparameter_config():
model $=$ make_model (hp)
model.train(train_split)
score $=$ model.evaluate(dev_split)
if score > best_score:
best_score = score
best_hp = hp

A Simplified Train-Dev-Test Cycle

```
train_split, dev_split, test_split = split_data(corpus)
best_score, best_hp = None, None
for hp in hyperparameter_config():
    model = make_model(hp)
    model.train(train_split)
    score = model.evaluate(dev_split)
    if score > best_score:
    best_score = score
    best_hp = hp
```

best_model = make_model(best_hp)
best_model.train(train_split)
test_score = best_model.evaluate(test_split)

A More Realistic Train-Dev-Test Cycle

```
train_split, dev_split, test_split = split_data(corpus)
if is_training:
    best_score, best_hp = None, None
    for hp in hyperparameter_config():
        model = make_model(hp)
        model.train(train_split)
        score = model.evaluate(dev_split)
        if score > best_score:
        best_score = score
        best_hp = hp
        model.save_to_disk()
else:
    model = load_from_disk()
    test_score = model.evaluate(test_split)
```


A More Realistic Train-Dev-Test Cycle

train_split, dev_split, test_split = split_data(corpus)

if is_training:

best_score, best_hp = None, None for hp in hyperparameter_config():
model = make_model(hp) model.train(train_split) score $=$ model.evaluate(dev_split) if score > best_score:
best_score = score best_hp = hp model.save_to_disk()
else:

Split the training/dev and test cycles!
 (Training can sometimes take a while.)

```
    model = load_from_disk()
    test_score = model.evaluate(test_split)
```


A More Realistic Train-Dev-Test Cycle

```
train_split, dev_split, test_split =
split_data(corpus)
if is_training:
    best_score, best_hp = None, None
    for hp in hyperparameter_config():
        model = make_model(hp)
        model.train(train_split)
        score = model.evaluate(dev_split)
        if score > best_score:
            best_score = score
            best_hp = hp
            model.save_to_disk()
else:
    model = load_from_disk()
    test_score = model.evaluate(test_split)
```

- https://pytorch.org/tutorials/beg inner/basics/optimization tutori al.html
https://pytorch.org/tutorials/beg inner/basics/saveloadrun tutoria l.html

Central Question: How Well Are We Doing?

Central Question: How Well Are We Doing?

Clustering
the task: what kind of problem are you solving?

Mutual Information

- V-score

Training Loss vs. Evaluation Score

In training, compute loss to update parameters

Sometimes loss is a computational compromise

- surrogate loss

The loss you use might not be as informative as you'd like

Binary classification: 90 of 100 training
examples are +1 , 10 of 100 are -1

Some Classification Metrics

Accuracy

Precision
Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Classification Evaluation: the 2-by-2 contingency table

Let's assume there are two classes/labels

Assume is the "positive" label

Given X, our classifier predicts either label

$$
p(\bigcirc \mid x) \text { vs. } p(\bigcirc \mid x)
$$

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actual Target Class

Not Target Class
("○")

Selected/
Guessed (" ${ }^{\prime \prime}$)
Not selected/ not guessed ("○")

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Selected/
Guessed ("O")
True Positive
Actual (TP)
Guessed

Actual Target Class ("С")

Not selected/ not guessed $(1 \backsim)$

Not Target Class
("○")

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actual Target Class (" ${ }^{\prime \prime}$)

Not Target Class
("○")

Selected/

Guessed ("O")
False Positive
$\bigcirc_{\text {ataol }}$ (FP)

Guessed
Not selected/ not guessed $(1 \backsim n)$

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("○")
Not selected/ not guessed $(1 \backsim n)$

Actual Target Class (" ${ }^{\prime}$ ")

True Positive Acrail (TP)

Guessed

Not Target Class
("○")

O Guessed

False Negative Actual
(FN)

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("○")
Not selected/ not guessed ("○")

Actual Target Class (" ${ }^{\prime}$ ")

True Positive Acrail (TP)

Guessed
False Negative
(FN)
Actual

Not Target Class
("○")

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("○")
Not selected/ not guessed

Actual Target Class (" ${ }^{\prime}$ ")

True Positive Areal (TP) Guessed
False Negative ancol

Not Target Class
("○")
False Positive
${ }^{\circ} \mathrm{O}$ (FP)
Guessed
True Negative

Actual
(TN)
Guessed

Construct this table by counting the number of TPs, FPs, FNs, TNs

Contingency Table Example

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Selected/
Guessed ("○")

Actual Target Class (" ${ }^{\prime}$ ")
True Positive (TP)
False Negative (FN)

Not Target Class ("○")
False Positive
(FP)
Not selected/ not guessed ("○")

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Selected/
Guessed ("○")

Actual Target Class ("С")
True Positive

$$
(T P)=2
$$

False Negative (FN)

Not Target Class ("○")

False Positive

(FP)
Not selected/ not guessed ("○")

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("O")

Actual Target Class (" ${ }^{\prime}$ ")
True Positive

$$
(T P)=2
$$

False Negative (FN)

Not Target Class ("○")

False Positive
 $$
(F P)=2
$$
 (FP) $=2$

True Negative (TN)

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("O")

Actual Target Class (" ${ }^{\prime}$ ")
True Positive

$$
(T P)=2
$$

False Negative
(FN) $=1$

Not Target Class ("○")
False Positive (FP) $=2$

True Negative (TN)

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("O")

Actual Target Class (" ${ }^{\prime \prime}$ ")
True Positive

$$
(\mathrm{TP})=2
$$

Not Target Class ("○")
False Positive (FP) $=2$

Not selected/ not guessed ("○")

False Negative
(FN) = 1

True Negative
$(T N)=1$

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Selected/

Guessed ("O")

Actual Target Class (" ${ }^{\prime}$ ")
True Positive

$$
(\mathrm{TP})=2
$$

False Negative (FN) = 1

Not Target Class ("○")

False Positive
 $$
(F P)=2
$$ (FP) $=2$

True Negative
(TN) = 1

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN
$\overline{T P+F P+F N+T N}$

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN

$$
\overline{T P+F P+F N+T N}
$$

Precision: \% of selected items that are correct

$$
\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}
$$

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN

$$
\overline{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct
$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$

Recall: \% of correct items that are selected
TP
$\overline{T P+F N}$

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct

$$
\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct TP

$$
\overline{\mathrm{TP}+\mathrm{FP}}
$$

Min: 0 :
Max: 1 -

Recall: \% of correct items that are selected

TP
$\overline{\mathrm{TP}+\mathrm{FN}}$

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

The Importance of "Polarity" in Binary

Classification

Fundamentally: what are you trying to "identify" in your classification?

Are you trying to find O or

The Importance of "Polarity" in Binary

Classification

The Importance of "Polarity" in Binary Classification

Correct Value

TN

The Importance of "Polarity" in Binary Classification

Correct Value

What are the accuracy, recall, and precision values?

The Importance of "Polarity" in Binary Classification

Correct Value

What are the accuracy, recall, and precision values?

Accuracy: 50\%
Recall: 66.67\%
Precision: 50\%

The Importance of "Polarity" in Binary

Classification

The Importance of "Polarity" in Binary Classification

Correct Value

T_{0}
FP
FN
TP

The Importance of "Polarity" in Binary Classification
Preadiced:
Actual: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Correct Value

What are the accuracy, recall, and precision values?

The Importance of "Polarity" in Binary Classification
Preaicted:
Actual: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Correct Value

What are the accuracy, recall, and precision values?

Accuracy: 50\%
Recall: 33.34\%
Precision: 50\%

The Importance of "Polarity" in Binary Classification

Correct Value

Remember: what are you trying to "identify" in your classification?

Precision and Recall Present a Tradeoff

precision

Precision and Recall Present a Tradeoff

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under
 this tradeoff curve

Min AUC: 0 :
Max AUC: 1 :

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under

Min AUC: 0 :
Max AUC: 1 :
this tradeoff curve

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Min AUC: 0 : Max AUC: 1 :

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall
2. Finding the area

How to implement: trapezoidal rule (\& others)

In practice: external library like the sklearn.metrics module

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

F1 measure: equal weighting between precision and recall

$$
F_{1}=\frac{2 * P * R}{P+R}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

F1 measure: equal weighting between precision and recall

$$
F_{1}=\frac{2 * P * R}{P+R}=\frac{2 * T P}{2 * T P+F P+F N}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

$$
\begin{gathered}
\text { macroprecision }=\frac{1}{C} \sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\frac{1}{C} \sum_{c} \text { precision }_{c} \\
\text { macrorecall }=\frac{1}{C} \sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FN}_{\mathrm{c}}}=\frac{1}{C} \sum_{c} \text { recall }_{\mathrm{c}}
\end{gathered}
$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$$
\begin{aligned}
\text { microprecision } & =\frac{\sum_{c} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FP}_{\mathrm{c}}} \\
\text { microrecall } & =\frac{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FN}_{\mathrm{c}}}
\end{aligned}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.
macroprecision $=\frac{1}{C} \sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\frac{1}{C} \sum_{c}$ precision $_{c}$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.
when to prefer macroaveraging?

But how do we compute stats for multiple classes?

- We already saw how the "polarity" affects the stats we compute...
Two main approaches. Either:

1. Compute "one-vs-all" 2×2 tables. OR
2. Generalize the 2×2 tables and compute perclass TP / FP / FN based on the diagonals and off-diagonals

1. Compute "one-vs-all" 2×2 tables

Look for	Actually Target	Actually Not Target	Look for N	Actually Target	Actually Not Target
Selected/G uessed	True Positive (TP)	False Positive (FP)	Selected/G uessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)	Not select/not guessed	False Negative (FN)	True Negative
(TN)					

Look for \square	Actually Target	Actually Not Target
Selected/G uessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative
(TN)		

1. Compute "one-vs-all" 2×2 tables

Look for	Actually Target	Actually Not Target	Look for		Actually Target
Selected/G uessed	2	1	Selually Not Target		
Not uessed	2	1			
select/not guessed	2	4	Not select/not guessed		1

Look for \square	Actually Target	Actually Not Target
Selected/G uessed	1	2
Not select/not guessed	1	5

2. Generalizing the 2-by-2 contingency table

Correct Value

$\bigcirc \square$
 \#
 \#
 \#
 \#
 \# \#
 \#
 \#
 \#

2. Generalizing the 2-by-2 contingency table

Correct Value

$\#$	$\#$	$\#$
$\#$	$\#$	$\#$
$\#$	$\#$	$\#$

2. Generalizing the 2-by-2 contingency table

Correct Value

2

0
1

1

2
0
1

$$
1
$$

$$
1
$$

2. Generalizing the 2-by-2 contingency table

Correct Value

How do you compute $T P$?
2. Generalizing the 2-by-2 contingency table

Correct Value

How do you compute $T P$?

2. Generalizing the 2-by-2 contingency table

Correct Value

2
0
1

1

2
0
1
1 1

How do you compute $F N_{\bigcirc}$?

2. Generalizing the 2-by-2 contingency table

Correct Value

How do you compute $F N_{\bigcirc}$?
2. Generalizing the 2-by-2 contingency table

Correct Value

2

1

1
1 1

How do you compute $F P_{\square}$?
2. Generalizing the 2-by-2 contingency table

Correct Value

Guessed Value 2 0	1	2	0	
		1	1	1

How do you compute $F P_{\square}$?

Generalizing the 2-by-2 contingency table

Correct Value

		$\#$	$\#$	$\#$
Guessed			$\#$	$\#$
Value	\bigcirc	$\#$	$\#$	$\#$
		$\#$	$\#$	$\#$

This is also called a Confusion Matrix

Generalizing the 2-by-2 contingency table

Correct Value

80
7

$$
2
$$

9
11
7
9

Q: Is this a good result?

Generalizing the 2-by-2 contingency table

Correct Value

30
25
40
30
50
35

Q: Is this a good result?

Generalizing the 2-by-2 contingency table

Correct Value

7	3	90
4	8	88
3	7	90

Q: Is this a good result?

Some Classification Metrics

Accuracy

Precision
Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Outline

Classification (Methodology)

Evaluation

