
Some slides courtesy & adapted from Jason Eisner

Overview of NLP Tasks and
Featurization

Frank Ferraro – ferraro@umbc.edu
CMSC 473/673

mailto:ferraro@umbc.edu

Today’s Learning Goals

• Define featurization and some examples
• Define some “classification” terminology
• Learn about NLP Tasks at a high-level, e.g.,
– Document classification
– Part of speech tagging
– Syntactic parsing
– Entity id/coreference

Helpful ML Terminology Recap (1)

• Model: the (computable) way you’re going
from inputs/representations of input to labels
or scores

• Weights/parameters: collections of vectors
that control how the model produces
labels/scores from inputs. These are learned.

Helpful ML Terminology Recap (2)

• Model: the (computable) way you’re going from
inputs/representations of input to labels or scores

• Weights/parameters: collections of vectors that control how
the model produces labels/scores from inputs. These are
learned.

• Objective function: a function, whose variables are the
weights of the model, that we numerically optimize in order to
learn appropriate weights based on the labels/scores. The
model’s weights are adjusted.

• Evaluation function: a function that scores how correct the
model’s predicted labels are. The model’s weights are not
adjusted.
– The evaluation and objective functions are (likely) different!

Helpful ML Terminology Recap (3)

Learning:
 the process of adjusting the model’s weights to
learn to make good predictions.

Inference / Prediction / Decoding / Classification:
 the process of using a model’s existing weights
to make (hopefully!) good predictions

ML/NLP Framework

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

ML/NLP Framework for Learning

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Objective
Function

score

give feedback
to the model

Objective
Function/
Learning

ML/NLP Framework for Prediction

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Evaluation
Function

score

Evaluation
Function

First: Featurization / Encoding / Representation

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Evaluation
Function

score

Objective / Eval
Function

Objective
Function

score

features:
K-dimensional vector
representations (one

per instance)

ML Term: “Featurization”

The procedure of extracting features for some
input

Often viewed as a K-dimensional vector function
f of the input language x

𝑓 𝑥 = (𝑓! 𝑥 , … , 𝑓"(𝑥))

Each of these is a feature
(/feature function)

ML Term: “Featurization”
The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the input
language x

𝑓 𝑥 = (𝑓! 𝑥 ,… , 𝑓"(𝑥))

In supervised settings, it can equivalently be viewed as a K-
dimensional vector function f of the input language x and a
potential label y

𝑓 𝑥, 𝑦 = (𝑓! 𝑥, 𝑦 , … , 𝑓"(𝑥, 𝑦))

Features can be thought of as “soft” rules
E.g., POSITIVE sentiments tweets may be more likely to have the
word “happy”

Defining Appropriate Features

Feature functions help extract useful features
(characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Defining Appropriate Features
Feature functions help extract useful features

(characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we’ll
come back to this!)

Often binary-valued (0 or 1), but can be real-valued

Three Common Types of Featurization
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-
relations)

2. Linguistically-inspired features
3. Dense features via embeddings

Three Common Types of Featurization
in NLP

1. Bag-of-words (or
bag-of-characters,
bag-of-relations)

2. Linguistically-
inspired features

3. Dense features via
embeddings

• easy to define / extract
• sometimes still very useful

Three Common Types of Featurization
in NLP

1. Bag-of-words (or
bag-of-characters,
bag-of-relations)

2. Linguistically-
inspired features

3. Dense features via
embeddings

• easy to define / extract
• sometimes still very useful

• harder to define
• helpful for interpretation
• depending on task:

conceptually helpful
• currently, not freq. used

Three Common Types of Featurization
in NLP

1. Bag-of-words (or
bag-of-characters,
bag-of-relations)

2. Linguistically-
inspired features

3. Dense features via
embeddings

• easy to define / extract
• sometimes still very useful

• harder to define
• helpful for interpretation
• depending on task:

conceptually helpful
• currently, not freq. used

• harder to define
• harder to extract (unless

there’s a model to run)
• currently: freq. used

Three Common Types of Featurization
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-
relations)
– Identify unique sufficient atomic sub-parts (e.g.,

words in a document)
– Define simple features over these, e.g.,
• Binary (0 or 1) è indicating presence
• Natural numbers è indicating number of times in a

context
• Real-valued è various other score (we’ll see examples

throughout the semester)
2. Linguistically-inspired features
3. Dense features via embeddings

Three Common Types of Featurization
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
– Identify unique sufficient atomic sub-parts (e.g., words in

a document)
– Define simple features over these, e.g.,

• Binary (0 or 1) è indicating presence
• Natural numbers è indicating number of times in a context
• Real-valued è various other score (we’ll see examples

throughout the semester)

2. Linguistically-inspired features
– Define features from words, word spans, or linguistic-

based annotations extracted from the document
3. Dense features via embeddings

Three Common Types of Featurization
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
– Identify unique sufficient atomic sub-parts (e.g., words in a

document)
– Define simple features over these, e.g.,

• Binary (0 or 1) è indicating presence
• Natural numbers è indicating number of times in a context
• Real-valued è various other score (we’ll see examples throughout

the semester)
2. Linguistically-inspired features
– Define features from words, word spans, or linguistic-based

annotations extracted from the document
3. Dense features via embeddings
– Compute/extract a real-valued vector, e.g., from word2vec,

ELMO, BERT, …

Example: Document Classification via
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used
to assist the authorities in
moments of chaos and potential
danger: after the Boston bombing
in 2013, when the Boston suspects
were still at large, and last month
in Los Angeles, during an active
shooter scare at the airport.

Let’s make a core assumption: the
label can be predicted from

counts of individual word types

Example: Document Classification via
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used
to assist the authorities in
moments of chaos and potential
danger: after the Boston bombing
in 2013, when the Boston suspects
were still at large, and last month
in Los Angeles, during an active
shooter scare at the airport.

feature extraction

Core assumption:
the label can be
predicted from

counts of individual
word types

𝑓# 𝑥 =# of times word
 type i appears
 in document x

With V word types,
define V feature

functions 𝑓# 𝑥 as

Example: Document Classification via
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used
to assist the authorities in
moments of chaos and potential
danger: after the Boston bombing
in 2013, when the Boston suspects
were still at large, and last month
in Los Angeles, during an active
shooter scare at the airport.

feature extraction

Core assumption:
the label can be
predicted from

counts of individual
word types

𝑓 𝑥 = 𝑓# 𝑥 #
$

𝑓# 𝑥 =# of times word
 type i appears
 in document x

With V word types,
define V feature

functions 𝑓# 𝑥 as

Example: Document Classification via
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used
to assist the authorities in
moments of chaos and potential
danger: after the Boston bombing
in 2013, when the Boston suspects
were still at large, and last month
in Los Angeles, during an active
shooter scare at the airport.

feature 𝑓! 𝑥 value

alerts 1

assist 1

bombing 1

Boston 2

…

sniffle 0

…

feature extraction

Core assumption:
the label can be
predicted from

counts of individual
word types

Example: Document Classification with
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used
to assist the authorities in
moments of chaos and potential
danger: after the Boston bombing
in 2013, when the Boston suspects
were still at large, and last month
in Los Angeles, during an active
shooter scare at the airport.

feature weight

alerts .043

assist -0.25

bombing 0.8

Boston -0.00001

…

w: weights

feature 𝑓! 𝑥 value

alerts 1

assist 1

bombing 1

Boston 2

…

f(x): “bag of words”

Second: Classification Terminology

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Evaluation
Function

score

Objective / Eval
Function

Objective
Function

score

Classification Types (Terminology)
Name Number of

Tasks
(Domains)
Labels are

Associated with

Label Types Example

(Binary) Classification

Multi-class
Classification

Multi-label
Classification

Multi-task
Classification

Classification Types (Terminology)
Name Number of

Tasks
(Domains)
Labels are

Associated with

Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of
{positive or negative}

Multi-class
Classification

Multi-label
Classification

Multi-task
Classification

Classification Types (Terminology)
Name Number of

Tasks
(Domains)
Labels are

Associated with

Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of
{positive or negative}

Multi-class
Classification 1 > 2 Part-of-speech: Choose one

of {Noun, Verb, Det, Prep, …}

Multi-label
Classification

Multi-task
Classification

Classification Types (Terminology)
Name Number of

Tasks
(Domains)
Labels are

Associated with

Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of
{positive or negative}

Multi-class
Classification 1 > 2 Part-of-speech: Choose one

of {Noun, Verb, Det, Prep, …}

Multi-label
Classification 1 > 2

Sentiment: Choose multiple
of {positive, angry, sad,

excited, …}

Multi-task
Classification

Classification Types (Terminology)
Name Number of

Tasks
(Domains)
Labels are

Associated with

Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of
{positive or negative}

Multi-class
Classification 1 > 2 Part-of-speech: Choose one

of {Noun, Verb, Det, Prep, …}

Multi-label
Classification 1 > 2

Sentiment: Choose multiple
of {positive, angry, sad,

excited, …}

Multi-task
Classification > 1

Per task: 2 or > 2
(can apply to binary

or multi-class)

Task 1: part-of-speech
Task 2: named entity tagging

…

Task 1: document labeling
Task 2: sentiment

600.465 - Intro to NLP - J. Eisner 32

Text Annotation Tasks

1. Classify the entire document
2. Classify word tokens individually
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

A demo (and note) about
transformers.pipeline

transformers.pipeline (API, tutorial)
• Many predefined tasks
• Allows for easy-to-use inference (prediction)

https://huggingface.co/docs/transformers/v4.33.2/en/main_classes/pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines

transformers.pipeline and Inference

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Evaluation
Function

score

Objective / Eval
Function

Objective
Function

score

transformers.pipeline make the
inference portion much easier… sometimes

A demo (and note) about
transformers.pipeline

transformers.pipeline (API, tutorial)
• Many predefined tasks
• Allows for easy-to-use inference (prediction)

But…
• what if your task isn’t there?
• how do you decide what model to use?! (nearly

3k models in https://huggingface.co/models)
• what if you want to use another model?

https://huggingface.co/docs/transformers/v4.33.2/en/main_classes/pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines
https://huggingface.co/models

Tasks ↔ pipeline
“Tasks” in this deck ≅ pipeline task= (not exhaustive)

Classify the entire document text-classification (if there’s a model w/
your labels)

Classify word tokens individually text-classification

Classify word tokens in a sequence token-classification

Identify phrases (“chunking”) token-classification

Syntactic annotation (parsing) N/A, or token-classification or text-
generation

Semantic annotation N/A, or token-classification or text-
generation

Text generation
• question-answering

• translation
• text-generation

600.465 - Intro to NLP - J. Eisner 37

Text Annotation Tasks

1. Classify the entire document
(“text categorization”)

2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation

Slide courtesy Jason Eisner, with mild edits

Text Classification

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Text Classification

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input:
 a document
 a fixed set of classes C = {c1, c2,…, cJ}

Output: a predicted class c from C

Text Classification

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input:
 a document linguistic blob
 a fixed set of classes C = {c1, c2,…, cJ}

Output: a predicted class c from C

Text Classification: Hand-coded Rules?

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Rules based on combinations of words or other features
spam: black-list-address OR (“dollars” AND “have been selected”)

Accuracy can be high
If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?

Text Classification: Supervised Machine Learning

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input:
a document d
a fixed set of classes C = {c1, c2,…, cJ}
A training set of m hand-labeled
documents (d1,c1),....,(dm,cm)

Output:
a learned classifier γ that maps
documents to classes

Text Classification: Supervised Machine Learning

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input:
a document d
a fixed set of classes C = {c1, c2,…, cJ}
A training set of m hand-labeled
documents (d1,c1),....,(dm,cm)

Output:
a learned classifier γ that maps
documents to classes

Naïve Bayes
Logistic regression

Neural network
Support-vector machines

k-Nearest Neighbors
…

600.465 - Intro to NLP - J. Eisner 45

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)
(WSD)

Build a special classifier just for tokens of “plant”

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)
WSD for

Build a special classifier just for tokens of “sentence”

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky

p(class | token in context)

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 53

What features? Example: “word to [the] left [of correction]”
slide courtesy of D. Yarowsky (modified)

Spelling correction using an
n-gram language model
(n ≥ 2) would use words to
left and right to help
predict the true word.

Similarly, an HMM would
predict a word’s class using
classes to left and right.

But we’d like to throw in all
kinds of other features,
too …

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 54

An assortment of possible cues ...

slide courtesy of D. Yarowsky (modified)

generates a whole bunch
of potential cues – use
data to find out which

ones work best

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 55

An assortment of possible cues ...

slide courtesy of D. Yarowsky (modified)

merged ranking
of all cues

of all these types

This feature is
relatively

weak, but weak
features are
still useful,

especially since
very few

features will
fire in a given

context.

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 56

Final decision list for lead (abbreviated)
slide courtesy of D. Yarowsky (modified)

List of all features,
 ranked by their weight.

(These weights are for a simple
“decision list” model where the
single highest-weighted feature

that fires gets to make the
decision all by itself.

 However, a log-linear model,
which adds up the weights of all

features that fire, would be
roughly similar.)

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 57

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

Part of Speech Tagging

• We could treat tagging as a token classification problem
– Tag each word independently given features of context
– And features of the word’s spelling (suffixes, capitalization)

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

classifier

NNP

Slide from Ray Mooney Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

VBD

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

DT

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

NN

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

CC

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

VBD

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

TO

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

VB

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

PRP

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

IN

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

DT

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

John saw the saw and decided to take it to the table.

classifier

NN

Slide from Ray Mooney

Classify each token independently but use as
input features, information about the
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

Part of Speech Tagging

Or we could use an HMM:

Start PN Verb Det Noun Prep Noun Prep Det Noun

Bill directed a cortege of autos through the dunes

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement

Det:t
he 0.32Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… e 0.2

Adj:
dire
cted
…

Adj:cool 0.0009
Noun:cool 0.007

Slide courtesy Jason Eisner, with mild edits

We’ll see
HMMs
later!

600.465 - Intro to NLP - J. Eisner

Part of Speech Tagging

• We could treat tagging as a token classification problem
– Tag each word independently given features of context
– And features of the word’s spelling (suffixes, capitalization)

• Or we could use an HMM:
– The point of the HMM is basically that the tag of one word might depend

on the tags of adjacent words.

• Combine these two ideas??
– We’d like rich features (e.g., in a log-linear model), but we’d also like our

feature functions to depend on adjacent tags.
– So, the problem is to predict all tags together.

Slide courtesy Jason Eisner, with mild edits

• Easy to build a “yes” or “no” predictor from supervised training data
– Plenty of software packages to do the learning & prediction
– Lots of people in NLP never go beyond this J

• Similarly, easy to build a system that chooses from a small finite set
– Basically the same deal
– But runtime goes up linearly with the size of the set, unless you’re clever (HW3)

• Harder to predict the best string or tree (set is exponentially large or infinite)

Supervised Learning Methods

Slide courtesy Jason Eisner, with mild edits

Can We {Do Better?
 {Be More Expressive?

CRF Tutorial, Fig 1.2, Sutton & McCallum (2012)

See: CMSC 678 or CMSC 691
(Prob. & Graphical ML)

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these words one at a time

predict the label for the word

from these hidden states

“cell”

Can We Use Neural, Recurrent
Methods?

• Easy to build a “yes” or “no” predictor from supervised training data
– Plenty of software packages to do the learning & prediction
– Lots of people in NLP never go beyond this J

• Similarly, easy to build a system that chooses from a small finite set
– Basically the same deal
– But runtime goes up linearly with the size of the set, unless you’re clever (HW3)

• Harder to predict the best string or tree (set is exponentially large or infinite)
– In the best case, requires dynamic programming; you might have to write your own code
– But finite-state or CRF toolkits may find the best string for you
– And you could modify someone else’s parser to pick the best tree
– An algorithm for picking the best can usually be turned into a learning algorithm
– You may need to rely on approximate solutions (e.g., via beam search)

Supervised Learning Methods

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 90

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of
predefined categories of interest

Person names
Organizations (companies, government organisations,

committees, etc)
Locations (cities, countries, rivers, etc)
Date and time expressions
Measures (percent, money, weight etc), email addresses, Web

addresses, street addresses, etc.
Domain-specific: names of drugs, medical conditions, names

of ships, bibliographic references etc.

Cunningham and Bontcheva (2003, RANLP Tutorial)

9/20/23 Slide from Jim Martin

Named Entity Recognition
CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday

it has increased fares by $6 per round trip on flights to some cities
also served by lower-cost carriers. American Airlines, a unit AMR,
immediately matched the move, spokesman Tim Wagner said.
United, a unit of UAL, said the increase took effect Thursday night
and applies to most routes where it competes against discount
carriers, such as Chicago to Dallas and Atlanta and Denver to San
Francisco, Los Angeles and New York.

Slide courtesy Jason Eisner, with mild edits

Slide from Jim Martin

NE Types

Slide courtesy Jason Eisner, with mild edits

Slide from Chris Brew, adapted from slide by William Cohen

Example: Information Extraction

Filling slots in a database from sub-segments of text.As a task:

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill
Gates railed against the economic philosophy
of open-source software with Orwellian fervor,
denouncing its communal licensing as a
"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
himself says Microsoft will gladly disclose its
crown jewels--the coveted code behind the
Windows operating system--to select
customers.

"We can be open source. We love the concept
of shared source," said Bill Veghte, a
Microsoft VP. "That's a super-important shift
for us in terms of code access.“

Richard Stallman, founder of the Free
Software Foundation, countered saying…

NAME TITLE ORGANIZATION
Bill Gates CEO Microsoft
Bill Veghte VP Microsoft
Richard Stallman founder Free Soft..

IE

Slide courtesy Jason Eisner, with mild edits

Phrase Types to Identify for IE

Closed set

He was born in Alabama…

The big Wyoming sky…

U.S. states

Regular set

Phone: (413) 545-1323

The CALD main office can be
reached at 412-268-1299

U.S. phone numbers

Complex pattern

University of Arkansas
P.O. Box 140
Hope, AR 71802

U.S. postal addresses

Headquarters:
1128 Main Street, 4th Floor
Cincinnati, Ohio 45210

…was among the six houses
sold by Hope Feldman that year.

Ambiguous patterns,
needing context and
many sources of evidence

Person names

Pawel Opalinski, Software
Engineer at WhizBang Labs.

Slide from Chris Brew, adapted from slide by William Cohen Slide courtesy Jason Eisner, with mild edits

• A key step in IE is to identify relevant phrases
– Named entities

• As on previous slides
– Relationship phrases

• “said”, “according to”, …
• “was born in”, “hails from”, …
• “bought”, “hopes to acquire”, “formed a joint agreement with”, …

– Simple syntactic chunks (e.g., non-recursive NPs)
• “Syntactic chunking” sometimes done before (or instead of) parsing
• Also, “segmentation”: divide Chinese text into words (no spaces)

• So, how do we learn to mark phrases?

Identifying phrases

Slide courtesy Jason Eisner, with mild edits

Reduce to a tagging problem …

• The IOB encoding (Ramshaw & Marcus 1995):
– B_X = “beginning” (first word of an X)
– I_X = “inside” (non-first word of an X)
– O = “outside” (not in any phrase)
– Does not allow overlapping or recursive phrases

…United Airlines said Friday it has increased …
B_ORG I_ORG O O O O O

… the move , spokesman Tim Wagner said …
 O O O O B_PER I_PER O

Slide adapted from Chris Brew

What if this were tagged as B_ORG instead?

Slide courtesy Jason Eisner, with mild edits

• Classified ads
• Restaurant reviews
• Bibliographic citations
• Appointment emails
• Legal opinions
• Papers describing clinical medical studies
• …

Example applications for IE

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 101

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

Garden Path
Sentences

The old man the boat .

Garden Path
Sentences

The old man the boat .

Garden Path
Sentences

The complex houses married and single soldiers and their families.

Garden Path
Sentences

The complex houses married and single soldiers and their families.

Garden Path
Sentences

The rat the cat the dog chased killed ate the malt.

Garden Path
Sentences

The rat that the cat the dog chased killed ate the malt.

Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.

Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.

Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.

Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.

Garden Path
Sentences

[The rat [the cat [the dog chased] killed] ate the malt].

Language can have recursive patterns

Syntactic parsing can help identify those

Context Free Grammar

Set of rewrite rules, comprised of terminals and
non-terminals

S à NP VP
NP à Det Noun

NP à Noun
NP à Det AdjP

NP à NP PP

PP à P NP
AdjP à Adj Noun

VP à V NP
Noun à Baltimore

…

Generate from a Context Free Grammar
S à NP VP

NP à Det Noun
NP à Noun

NP à Det AdjP
NP à NP PP

PP à P NP
AdjP à Adj Noun

VP à V NP
Noun à Baltimore

…

Baltimore is a great city

S

NP VP

Noun

Baltimore

Verb NP

is a great city

Assign Structure (Parse) with a
Context Free Grammar

S à NP VP
NP à Det Noun

NP à Noun
NP à Det AdjP

NP à NP PP

PP à P NP
AdjP à Adj Noun

VP à V NP
Noun à Baltimore

…

Baltimore is a great city
S

NP VP

Noun

Baltimore

Verb NP

is a great city

[S [NP [Noun Baltimore]] [VP [Verb is] [NP a great city]]]

bracket notation

(S (NP (Noun Baltimore))
 (VP (V is)
 (NP a great city)))

S-expression

T = Cell[N][N+1]

for(j = 1; j ≤ N; ++j) {
 T[j-1][j].add(X for non-terminal X in G if X à wordj)
}

for(width = 2; width ≤ N; ++width) {
 for(start = 0; start < N - width; ++start) {
 end = start + width
 for(mid = start+1; mid < end; ++mid) {
 for(non-terminal Y : T[start][mid]) {
 for(non-terminal Z : T[mid][end]) {
 T[start][end].add(X for rule X à Y Z : G)
 }
 }
 }
 }
}

You may get to use a
dynamic program

X

Y Z

Y Z

You can get dependency-
based syntactic forms

I ate the meal with friends

NP VP

VP NP PP

S

NP VP

S

VP NP

PPNP
nsubj dobj nmod

nsubj dobj nmod

And Go From Syntax to Shallow Semantics

http://corenlp.run/ (constituency & dependency)

https://github.com/hltcoe/predpatt

http://openie.allenai.org/

http://www.cs.rochester.edu/research/knext/browse/ (constituency trees)

http://rtw.ml.cmu.edu/rtw/

Angeli et al. (2015)

“Open
Information
Extraction”

a sampling of
efforts

http://corenlp.run/
https://github.com/hltcoe/predpatt
http://openie.allenai.org/
http://www.cs.rochester.edu/research/knext/browse/
http://rtw.ml.cmu.edu/rtw/

• Easy to build a “yes” or “no” predictor from supervised training data
– Plenty of software packages to do the learning & prediction
– Lots of people in NLP never go beyond this J

• Similarly, easy to build a system that chooses from a small finite set
– Basically the same deal
– But runtime goes up linearly with the size of the set, unless you’re clever (HW3)

• Harder to predict the best string or tree (set is exponentially large or infinite)
– In the best case, requires dynamic programming; you might have to write your own code
– But finite-state or CRF toolkits may find the best string for you
– And you could modify someone else’s parser to pick the best tree
– An algorithm for picking the best can usually be turned into a learning algorithm
– You may need to rely on approximate solutions (e.g., via beam search)

• Hardest if your features look at “non-local” properties of the string or tree
– Now dynamic programming won’t work (or will be something awful like O(n9))
– You need some kind of approximate search
– Can be harder to turn approximate search into a learning algorithm
– Still, this is a standard preoccupation of machine learning

(“structured prediction,” “graphical models”)

Supervised Learning Methods

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner 120

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

Semantic Role Labeling (SRL)

• For each predicate (e.g., verb)
1. find its arguments (e.g., NPs)
2. determine their semantic roles

John drove Mary from Austin to Dallas in his Toyota Prius.

The hammer broke the window.
– agent: Actor of an action
– patient: Entity affected by the action
– source: Origin of the affected entity
– destination: Destination of the affected entity
– instrument: Tool used in performing action.
– beneficiary: Entity for whom action is performed

Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits

As usual, can solve as classification …
• Consider one verb at a time: “bit”
• Classify the role (if any) of each of the 3 NPs

S

NP VP

NP PP

The

Prep NP

with

the

V NP

bit

a

big

dog girl

boy

Det A NDet A N

εAdj A

ε

Det A N

ε

Color Code:
not-a-role
agent
patient
source
destination
instrument
beneficiary

Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits

Parse tree paths as classification
features

S

NP VP

NP PP

The

Prep NP

with

the

V NP

bit

a

big

dog girl

boy

Det A NDet A N

εAdj A

ε

Det A N

ε

Path feature is

 V ↑ VP ↑ S ↓ NP

which tends to
be associated
with agent role

Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits

S

NP VP

NP PP

The

Prep NP

with

the

V NP

bit

a

big

dog girl

boy

Det A NDet A N

εAdj A

ε

Det A N

ε

Slide thanks to Ray Mooney (modified)

Parse tree paths as classification features

Path feature is

V ↑ VP ↑ S ↓ NP ↓ PP ↓ NP

which tends to
be associated
with no role

Slide courtesy Jason Eisner, with mild edits

Head words as features
• Some roles prefer to be filled by certain kinds of NPs.
• This can give us useful features for classifying accurately:

– “John ate the spaghetti with chopsticks.” (instrument)
 “John ate the spaghetti with meatballs.” (patient)
 “John ate the spaghetti with Mary.”

• Instruments should be tools
• Patient of “eat” should be edible

– “John bought the car for $21K.” (instrument)
 “John bought the car for Mary.” (beneficiary)

• Instrument of “buy” should be Money
• Beneficiaries should be animate (things with desires)

– “John drove Mary to school in the van”
 “John drove the van to work with Mary.”

• What do you think?
Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits

Uses of Semantic Roles
• Find the answer to a user’s question

– “Who” questions usually want Agents
– “What” question usually want Patients
– “How” and “with what” questions usually want Instruments
– “Where” questions frequently want Sources/Destinations.
– “For whom” questions usually want Beneficiaries
– “To whom” questions usually want Destinations

• Generate text
– Many languages have specific syntactic constructions that must or should

be used for specific semantic roles.
• Word sense disambiguation, using selectional restrictions

– The bat ate the bug. (what kind of bat? what kind of bug?)
• Agents (particularly of “eat”) should be animate – animal bat, not baseball bat
• Patients of “eat” should be edible – animal bug, not software bug

– John fired the secretary.
 John fired the rifle.

Patients of fire1 are different than patients of fire2
Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits

• PropBank – coarse-grained roles of verbs
• NomBank – similar, but for nouns
• FrameNet – fine-grained roles of any word
• TimeBank – temporal expressions

Other Current Semantic Annotation Tasks
(similar to SRL)

Slide courtesy Jason Eisner, with mild edits

We avenged the insult by setting fire to his village.

REVENGE FRAME

Avenger
Offender (unexpressed in this sentence)
Injury
Injured Party (unexpressed in this sentence)
Punishment

FrameNet Example

a word/phrase that triggers the REVENGE frame

Slide thanks to CJ Fillmore (modified) Slide courtesy Jason Eisner, with mild edits

REVENGE FRAME
triggering words and phrases

(not limited to verbs)

avenge, revenge, retaliate, get back at, pay back, get even, …

revenge, vengeance, retaliation, retribution, reprisal, …

vengeful, retaliatory, retributive; in revenge, in retaliation, …

take revenge, wreak vengeance, exact retribution, …

FrameNet Example

Slide thanks to CJ Fillmore (modified) Slide courtesy Jason Eisner, with mild edits

Slide courtesy Jason Eisner

600.465 - Intro to NLP - J. Eisner 131

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

Generating new text

1. Question answering
2. Speech recognition (transcribe as text)
3. Machine translation
4. Text generation from semantics
5. Inflect, analyze, or transliterate words
6. Single- or multi-doc summarization

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

Deeper Information Extraction

1. Coreference resolution (within a document)

2. Entity linking (across documents)

3. Event extraction and linking
4. Knowledge base population (KBP)
5. Recognizing texual entailment (RTE)

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

User interfaces

1. Dialogue systems
§ Personal assistance
§ Human-computer collaboration
§ Interactive teaching

2. Language teaching; writing help
3. Question answering
4. Information retrieval

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

Multimodal interfaces or modeling

1. Sign languages
2. Speech + gestures
3. Images + captions
4. Brain recordings, human reaction

times

Slide courtesy Jason Eisner, with mild edits

600.465 - Intro to NLP - J. Eisner

Discovering Linguistic Structure

1. Decipherment
2. Grammar induction
3. Topic modeling
4. Deep learning of word meanings
5. Language evolution (historical linguistics)
6. Grounded semantics

NLP automates things that humans do well, so that they can be done
automatically on more sentences. But this slide is about language analysis
that’s hard even for humans. Computational linguistics (like comp bio, etc.)
can discover underlying patterns in large datasets: things we didn’t know!

Slide courtesy Jason Eisner, with mild edits

Today’s Learning Goals

• Define featurization and some examples
• Learn about NLP Tasks at a high-level:
– Document classification
– Part of speech tagging
– Syntactic parsing
– Entity id/coreference

