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Today’s Learning Goals

• Define featurization and some examples
• Define some “classification” terminology
• Learn about NLP Tasks at a high-level, e.g.,
– Document classification
– Part of speech tagging
– Syntactic parsing
– Entity id/coreference



Helpful ML Terminology Recap (1)

• Model: the (computable) way you’re going 
from inputs/representations of input to labels 
or scores

• Weights/parameters: collections of vectors 
that control how the model produces 
labels/scores from inputs. These are learned.



Helpful ML Terminology Recap (2)

• Model: the (computable) way you’re going from 
inputs/representations of input to labels or scores

• Weights/parameters: collections of vectors that control how 
the model produces labels/scores from inputs. These are 
learned.

• Objective function: a function, whose variables are the 
weights of the model, that we numerically optimize in order to 
learn appropriate weights based on the labels/scores. The 
model’s weights are adjusted.

• Evaluation function: a function that scores how correct the 
model’s predicted labels are. The model’s weights are not 
adjusted.
– The evaluation and objective functions are (likely) different!



Helpful ML Terminology Recap (3)

Learning: 
 the process of adjusting the model’s weights to 
learn to make good predictions.

Inference / Prediction / Decoding / Classification: 
 the process of using a model’s existing weights 
to make (hopefully!) good predictions



ML/NLP Framework

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ



ML/NLP Framework for Learning

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Objective 
Function

score

give feedback 
to the model

Objective 
Function/ 
Learning



ML/NLP Framework for Prediction

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Evaluation 
Function



First: Featurization / Encoding / Representation

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score

features: 
K-dimensional vector 
representations (one 

per instance)



ML Term: “Featurization”

The procedure of extracting features for some 
input

Often viewed as a K-dimensional vector function 
f of the input language x 

𝑓 𝑥 = (𝑓! 𝑥 , … , 𝑓"(𝑥))

Each of these is a feature 
(/feature function)



ML Term: “Featurization”
The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the input 
language x 

𝑓 𝑥 = (𝑓! 𝑥 ,… , 𝑓"(𝑥))

In supervised settings, it can equivalently be viewed as a K-
dimensional vector function f of the input language x and a 
potential label y

𝑓 𝑥, 𝑦 = (𝑓! 𝑥, 𝑦 , … , 𝑓"(𝑥, 𝑦))

Features can be thought of as “soft” rules
E.g., POSITIVE sentiments tweets may be more likely to have the 
word “happy”



Defining Appropriate Features

Feature functions help extract useful features 
(characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired



Defining Appropriate Features
Feature functions help extract useful features 

(characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we’ll 
come back to this!)

Often binary-valued (0 or 1), but can be real-valued



Three Common Types of Featurization 
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-
relations)

2. Linguistically-inspired features
3. Dense features via embeddings
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• sometimes still very useful
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• depending on task: 

conceptually helpful
• currently, not freq. used



Three Common Types of Featurization 
in NLP

1. Bag-of-words (or 
bag-of-characters, 
bag-of-relations)

2. Linguistically-
inspired features

3. Dense features via 
embeddings

• easy to define / extract
• sometimes still very useful

• harder to define
• helpful for interpretation
• depending on task: 

conceptually helpful
• currently, not freq. used

• harder to define
• harder to extract (unless 

there’s a model to run)
• currently: freq. used



Three Common Types of Featurization 
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-
relations)
– Identify unique sufficient atomic sub-parts (e.g., 

words in a document)
– Define simple features over these, e.g.,
• Binary (0 or 1) è indicating presence
• Natural numbers è indicating number of times in a 

context
• Real-valued è various other score (we’ll see examples 

throughout the semester)
2. Linguistically-inspired features
3. Dense features via embeddings
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Three Common Types of Featurization 
in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
– Identify unique sufficient atomic sub-parts (e.g., words in a 

document)
– Define simple features over these, e.g.,

• Binary (0 or 1) è indicating presence
• Natural numbers è indicating number of times in a context
• Real-valued è various other score (we’ll see examples throughout 

the semester)
2. Linguistically-inspired features
– Define features from words, word spans, or linguistic-based 

annotations extracted from the document
3. Dense features via embeddings
– Compute/extract a real-valued vector, e.g., from word2vec, 

ELMO, BERT, …



Example: Document Classification via 
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

Let’s make a core assumption: the 
label can be predicted from 

counts of individual word types



Example: Document Classification via 
Bag-of-Words Features

TECH
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Electronic alerts have been used 
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Example: Document Classification via 
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types

𝑓 𝑥 = 𝑓# 𝑥 #
$

𝑓# 𝑥 =# of times word 
 type i appears
 in document x

With V word types, 
define V feature 

functions 𝑓# 𝑥  as



Example: Document Classification via 
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

feature 𝑓! 𝑥 value

alerts 1

assist 1

bombing 1

Boston 2

…

sniffle 0

…

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types



Example: Document Classification with 
Bag-of-Words Features

TECH

NOT TECH

Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

feature weight

alerts .043

assist -0.25

bombing 0.8

Boston -0.00001

…

w: weights

feature 𝑓! 𝑥 value

alerts 1

assist 1

bombing 1

Boston 2

…

f(x): “bag of words”



Second: Classification Terminology

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score



Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification

Multi-class 
Classification

Multi-label 
Classification

Multi-task 
Classification



Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of 
{positive or negative}

Multi-class 
Classification

Multi-label 
Classification

Multi-task 
Classification



Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of 
{positive or negative}

Multi-class 
Classification 1 > 2 Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification

Multi-task 
Classification



Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of 
{positive or negative}

Multi-class 
Classification 1 > 2 Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification 1 > 2

Sentiment: Choose multiple 
of {positive, angry, sad, 

excited, …}

Multi-task 
Classification



Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2 Sentiment: Choose one of 
{positive or negative}

Multi-class 
Classification 1 > 2 Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification 1 > 2

Sentiment: Choose multiple 
of {positive, angry, sad, 

excited, …}

Multi-task 
Classification > 1

Per task: 2 or > 2 
(can apply to binary 

or multi-class)

Task 1: part-of-speech
Task 2: named entity tagging

…
----------------------

Task 1: document labeling
Task 2: sentiment
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Text Annotation Tasks

1. Classify the entire document
2. Classify word tokens individually
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits



A demo (and note) about
transformers.pipeline

transformers.pipeline (API, tutorial)
• Many predefined tasks
• Allows for easy-to-use inference (prediction)

https://huggingface.co/docs/transformers/v4.33.2/en/main_classes/pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines


transformers.pipeline and Inference

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score

transformers.pipeline make the 
inference portion much easier… sometimes



A demo (and note) about
transformers.pipeline

transformers.pipeline (API, tutorial)
• Many predefined tasks
• Allows for easy-to-use inference (prediction)

But…
• what if your task isn’t there?
• how do you decide what model to use?! (nearly 

3k models in https://huggingface.co/models)
• what if you want to use another model?

https://huggingface.co/docs/transformers/v4.33.2/en/main_classes/pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines
https://huggingface.co/models


Tasks ↔ pipeline
“Tasks” in this deck ≅ pipeline task= (not exhaustive)

Classify the entire document text-classification (if there’s a model w/ 
your labels)

Classify word tokens individually text-classification

Classify word tokens in a sequence token-classification

Identify phrases (“chunking”) token-classification

Syntactic annotation (parsing) N/A, or token-classification or text-
generation

Semantic annotation N/A, or token-classification or text-
generation

Text generation
• question-answering

• translation
• text-generation
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Text Annotation Tasks

1. Classify the entire document
(“text categorization”)

2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation

Slide courtesy Jason Eisner, with mild edits



Text Classification

Assigning subject 
categories, topics, or 
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…



Text Classification
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Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
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Input:
 a document
 a fixed set of classes  C = {c1, c2,…, cJ}

Output: a predicted class c from C



Text Classification

Assigning subject 
categories, topics, or 
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input:
 a document linguistic blob
 a fixed set of classes  C = {c1, c2,…, cJ}

Output: a predicted class c from C



Text Classification: Hand-coded Rules?

Assigning subject 
categories, topics, or 
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Rules based on combinations of words or other features
spam: black-list-address OR (“dollars” AND “have been selected”)

Accuracy can be high
If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?



Text Classification: Supervised Machine Learning

Assigning subject 
categories, topics, or 
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input: 
a document d
a fixed set of classes  C = {c1, c2,…, cJ}
A training set of m hand-labeled 
documents (d1,c1),....,(dm,cm)

Output: 
a learned classifier γ that maps 
documents to classes



Text Classification: Supervised Machine Learning

Assigning subject 
categories, topics, or 
genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis
…

Input: 
a document d
a fixed set of classes  C = {c1, c2,…, cJ}
A training set of m hand-labeled 
documents (d1,c1),....,(dm,cm)

Output: 
a learned classifier γ that maps 
documents to classes

Naïve Bayes
Logistic regression

Neural network
Support-vector machines

k-Nearest Neighbors
…



600.465 - Intro to NLP - J. Eisner 45

Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 
(WSD)

Build a special classifier just for tokens of “plant”

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 
WSD for

Build a special classifier just for tokens of “sentence”

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 

Slide courtesy Jason Eisner, with mild edits



slide courtesy of D. Yarowsky

p(class | token in context) 

Slide courtesy Jason Eisner, with mild edits
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What features?  Example: “word to [the] left [of correction]”
slide courtesy of D. Yarowsky (modified)

Spelling correction using an 
n-gram language model 
(n ≥ 2) would use words to 
left and right to help 
predict the true word.

Similarly, an HMM would 
predict a word’s class using 
classes to left and right.

But we’d like to throw in all 
kinds of other features, 
too …

Slide courtesy Jason Eisner, with mild edits
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An assortment of possible cues ...

slide courtesy of D. Yarowsky (modified)

generates a whole bunch 
of potential cues – use 
data to find out which 

ones work best

Slide courtesy Jason Eisner, with mild edits
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An assortment of possible cues ...

slide courtesy of D. Yarowsky (modified)

merged ranking
of all cues 

of all these types

This feature is 
relatively 

weak, but weak 
features are 
still useful, 

especially since 
very few 

features will 
fire in a given 

context.

Slide courtesy Jason Eisner, with mild edits
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Final decision list for lead   (abbreviated)
slide courtesy of D. Yarowsky (modified)

List of all features,
 ranked by their weight.

(These weights are for a simple 
“decision list” model where the 
single highest-weighted feature 

that fires gets to make the 
decision all by itself.

  However, a log-linear model, 
which adds up the weights of all 

features that fire, would be 
roughly similar.)

Slide courtesy Jason Eisner, with mild edits
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Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits
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Part of Speech Tagging

• We could treat tagging as a token classification problem
– Tag each word independently given features of context
– And features of the word’s spelling (suffixes, capitalization)

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP

Slide from Ray Mooney Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits



Sequence Labeling as Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN

Slide from Ray Mooney

Classify each token independently but use as 
input features, information about the 
surrounding tokens (sliding window).

Slide courtesy Jason Eisner, with mild edits
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Part of Speech Tagging

Or we could use an HMM: 

Start PN   Verb    Det     Noun  Prep Noun   Prep     Det  Noun 

Bill  directed   a    cortege  of   autos  through  the  dunes

0.4 0.6

0.001

probs
from tag
bigram
model

probs from
unigram
replacement

Det:t
he 0.32Det

Start Adj

Noun

Stop

Det

Adj

Noun

Det

Adj

Noun

Det

Adj

Noun

Adj:directed… Noun:autos… e 0.2

Adj:
dire
cted
…

Adj:cool 0.0009
Noun:cool 0.007

Slide courtesy Jason Eisner, with mild edits

We’ll see 
HMMs 
later!
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Part of Speech Tagging

• We could treat tagging as a token classification problem
– Tag each word independently given features of context
– And features of the word’s spelling (suffixes, capitalization)

• Or we could use an HMM: 
– The point of the HMM is basically that the tag of one word might depend 

on the tags of adjacent words.

• Combine these two ideas??
– We’d like rich features (e.g., in a log-linear model), but we’d also like our 

feature functions to depend on adjacent tags.
– So, the problem is to predict all tags together.

Slide courtesy Jason Eisner, with mild edits



• Easy to build a “yes” or “no” predictor from supervised training data
– Plenty of software packages to do the learning & prediction
– Lots of people in NLP never go beyond this J

• Similarly, easy to build a system that chooses from a small finite set
– Basically the same deal
– But runtime goes up linearly with the size of the set, unless you’re clever (HW3)

• Harder to predict the best string or tree (set is exponentially large or infinite)

Supervised Learning Methods

Slide courtesy Jason Eisner, with mild edits



Can We {Do Better?
    {Be More Expressive?

CRF Tutorial, Fig 1.2, Sutton & McCallum (2012)

See: CMSC 678 or CMSC 691 
(Prob. & Graphical ML)



wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these words one at a time

predict the label for the word

from these hidden states

“cell”

Can We Use Neural, Recurrent 
Methods?



• Easy to build a “yes” or “no” predictor from supervised training data
– Plenty of software packages to do the learning & prediction
– Lots of people in NLP never go beyond this J

• Similarly, easy to build a system that chooses from a small finite set
– Basically the same deal
– But runtime goes up linearly with the size of the set, unless you’re clever (HW3)

• Harder to predict the best string or tree (set is exponentially large or infinite)
– In the best case, requires dynamic programming; you might have to write your own code
– But finite-state or CRF toolkits may find the best string for you
– And you could modify someone else’s parser to pick the best tree
– An algorithm for picking the best can usually be turned into a learning algorithm
– You may need to rely on approximate solutions (e.g., via beam search)

Supervised Learning Methods

Slide courtesy Jason Eisner, with mild edits
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Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits



Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of 
predefined categories of interest

Person names
Organizations (companies, government organisations, 

committees, etc)
Locations (cities, countries, rivers, etc)
Date and time expressions
Measures (percent, money, weight etc), email addresses, Web 

addresses, street addresses, etc. 
Domain-specific: names of drugs, medical conditions, names 

of ships, bibliographic references etc.

Cunningham and Bontcheva (2003, RANLP Tutorial)



9/20/23 Slide from Jim Martin

Named Entity Recognition
CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday 

it has increased fares by $6 per round trip on flights to some cities 
also served by lower-cost carriers. American Airlines, a unit AMR, 
immediately matched the move, spokesman Tim Wagner said. 
United, a unit of UAL, said the increase took effect Thursday night 
and applies to most routes where it competes against discount 
carriers, such as Chicago to Dallas and Atlanta and Denver to San 
Francisco, Los Angeles and New York.

Slide courtesy Jason Eisner, with mild edits



Slide from Jim Martin

NE Types

Slide courtesy Jason Eisner, with mild edits



Slide from Chris Brew, adapted from slide by William Cohen

Example: Information Extraction

Filling slots in a database from sub-segments of text.As a task:

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill 
Gates railed against the economic philosophy 
of open-source software with Orwellian fervor, 
denouncing its communal licensing as a 
"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is 
made public to encourage improvement and 
development by outside programmers. Gates 
himself says Microsoft will gladly disclose its 
crown jewels--the coveted code behind the 
Windows operating system--to select 
customers.

"We can be open source. We love the concept 
of shared source," said Bill Veghte, a 
Microsoft VP. "That's a super-important shift 
for us in terms of code access.“

Richard Stallman, founder of the Free 
Software Foundation, countered saying…

NAME              TITLE   ORGANIZATION
Bill Gates        CEO      Microsoft
Bill Veghte       VP       Microsoft
Richard Stallman  founder  Free Soft..

IE

Slide courtesy Jason Eisner, with mild edits



Phrase Types to Identify for IE

Closed set

He was born in Alabama…

The big Wyoming sky…

U.S. states

Regular set

Phone: (413) 545-1323

The CALD main office can be 
reached at 412-268-1299

U.S. phone numbers

Complex pattern

University of Arkansas
P.O. Box 140
Hope, AR  71802

U.S. postal addresses

Headquarters:
1128 Main Street, 4th Floor
Cincinnati, Ohio 45210

…was among the six houses 
sold by Hope Feldman that year.

Ambiguous patterns,
needing context and
many sources of evidence

Person names

Pawel Opalinski, Software
Engineer at WhizBang Labs.

Slide from Chris Brew, adapted from slide by William Cohen Slide courtesy Jason Eisner, with mild edits



• A key step in IE is to identify relevant phrases
– Named entities

• As on previous slides
– Relationship phrases

• “said”, “according to”, …
• “was born in”, “hails from”, …
• “bought”, “hopes to acquire”, “formed a joint agreement with”, …

– Simple syntactic chunks (e.g., non-recursive NPs)
• “Syntactic chunking” sometimes done before (or instead of) parsing
• Also, “segmentation”: divide Chinese text into words (no spaces) 

• So, how do we learn to mark phrases?

Identifying phrases

Slide courtesy Jason Eisner, with mild edits



Reduce to a tagging problem …

• The IOB encoding (Ramshaw & Marcus 1995):
– B_X = “beginning” (first word of an X)
– I_X = “inside” (non-first word of an X)
– O = “outside” (not in any phrase)
– Does not allow overlapping or recursive phrases

…United Airlines said Friday it has increased …
B_ORG   I_ORG        O        O         O   O            O

… the move  ,  spokesman Tim Wagner said  …
   O      O     O         O        B_PER  I_PER     O    

Slide adapted from Chris Brew

What if this were tagged as B_ORG instead?

Slide courtesy Jason Eisner, with mild edits



• Classified ads
• Restaurant reviews
• Bibliographic citations
• Appointment emails
• Legal opinions
• Papers describing clinical medical studies
• …

Example applications for IE

Slide courtesy Jason Eisner, with mild edits
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Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits



Garden Path
Sentences

The old man the boat .



Garden Path
Sentences

The old man the boat .



Garden Path
Sentences

The complex houses married and single soldiers and their families.



Garden Path
Sentences

The complex houses married and single soldiers and their families.



Garden Path
Sentences

The rat the cat the dog chased killed ate the malt.



Garden Path
Sentences

The rat that the cat the dog chased killed ate the malt.



Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.



Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.



Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.



Garden Path
Sentences

The rat that the cat that the dog chased killed ate the malt.



Garden Path
Sentences

[The rat [the cat [the dog chased] killed] ate the malt].

Language can have recursive patterns

Syntactic parsing can help identify those



Context Free Grammar

Set of rewrite rules, comprised of terminals and 
non-terminals

S à NP VP
NP à Det Noun

NP à Noun
NP à Det AdjP

NP à NP PP

PP à P NP
AdjP à Adj Noun

VP à V NP
Noun à Baltimore

…



Generate from a Context Free Grammar
S à NP VP

NP à Det Noun
NP à Noun

NP à Det AdjP
NP à NP PP

PP à P NP
AdjP à Adj Noun

VP à V NP
Noun à Baltimore

…

Baltimore is a great city

S

NP VP

Noun

Baltimore

Verb NP

is a great city



Assign Structure (Parse) with a
Context Free Grammar

S à NP VP
NP à Det Noun

NP à Noun
NP à Det AdjP

NP à NP PP

PP à P NP
AdjP à Adj Noun

VP à V NP
Noun à Baltimore

…

Baltimore is a great city
S

NP VP

Noun

Baltimore

Verb NP

is a great city

[S [NP [Noun Baltimore] ] [VP [Verb is] [NP a great city]]]

bracket notation

(S (NP (Noun Baltimore))
     (VP (V is)
            (NP a great city)))

S-expression



T =  Cell[N][N+1]

for(j = 1; j ≤ N; ++j) {
    T[j-1][j].add(X for non-terminal X in G if X à wordj)
}

for(width = 2; width ≤ N; ++width) {
    for(start = 0; start < N - width; ++start) {
        end = start + width
        for(mid = start+1; mid < end; ++mid) {
            for(non-terminal Y : T[start][mid]) {
                for(non-terminal Z : T[mid][end]) {
                    T[start][end].add(X for rule X à Y Z : G)
                }
            }
        }
    }
}

You may get to use a 
dynamic program

X

Y Z

Y Z



You can get dependency-
based syntactic forms

I ate the meal with friends

NP VP

VP NP PP

S

NP VP

S

VP NP

PPNP
nsubj dobj nmod

nsubj dobj nmod



And Go From Syntax to Shallow Semantics

http://corenlp.run/ (constituency & dependency)

https://github.com/hltcoe/predpatt

http://openie.allenai.org/

http://www.cs.rochester.edu/research/knext/browse/ (constituency trees)

http://rtw.ml.cmu.edu/rtw/ 

Angeli et al. (2015)

“Open 
Information 
Extraction”

a sampling of 
efforts

http://corenlp.run/
https://github.com/hltcoe/predpatt
http://openie.allenai.org/
http://www.cs.rochester.edu/research/knext/browse/
http://rtw.ml.cmu.edu/rtw/


• Easy to build a “yes” or “no” predictor from supervised training data
– Plenty of software packages to do the learning & prediction
– Lots of people in NLP never go beyond this J

• Similarly, easy to build a system that chooses from a small finite set
– Basically the same deal
– But runtime goes up linearly with the size of the set, unless you’re clever (HW3)

• Harder to predict the best string or tree (set is exponentially large or infinite)
– In the best case, requires dynamic programming; you might have to write your own code
– But finite-state or CRF toolkits may find the best string for you
– And you could modify someone else’s parser to pick the best tree
– An algorithm for picking the best can usually be turned into a learning algorithm
– You may need to rely on approximate solutions (e.g., via beam search)

• Hardest if your features look at “non-local” properties of the string or tree
– Now dynamic programming won’t work (or will be something awful like O(n9))
– You need some kind of approximate search
– Can be harder to turn approximate search into a learning algorithm
– Still, this is a standard preoccupation of machine learning 

(“structured prediction,” “graphical models”)

Supervised Learning Methods

Slide courtesy Jason Eisner, with mild edits
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Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits



Semantic Role Labeling (SRL)

• For each predicate (e.g., verb)
1. find its arguments (e.g., NPs) 
2. determine their semantic roles

John drove Mary from Austin to Dallas in his Toyota Prius.

The hammer broke the window.
– agent: Actor of an action
– patient: Entity affected by the action
– source: Origin of the affected entity
– destination: Destination of the affected entity
– instrument: Tool used in performing action.
– beneficiary: Entity for whom action is performed

Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits



As usual, can solve as classification … 
• Consider one verb at a time: “bit”
• Classify the role (if any) of each of the 3 NPs

S

NP VP

NP            PP

The

Prep   NP

with

the

V        NP

bit

a

big

dog girl

boy

Det  A  NDet  A  N

εAdj A

ε

Det  A  N

ε

Color Code:
not-a-role
agent 
patient   
source   
destination   
instrument
beneficiary

Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits



Parse tree paths as classification 
features 

S

NP                           VP

NP            PP

The

Prep   NP

with

the

V        NP

bit

a

big

dog girl

boy

Det  A  NDet  A  N

εAdj A

ε

Det  A  N

ε

Path feature is

   V ↑ VP ↑ S ↓ NP

which tends to 
be associated 
with agent role

Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits



S

NP                           VP

NP            PP

The

Prep   NP

with

the

V        NP

bit

a

big

dog girl

boy

Det  A  NDet  A  N

εAdj A

ε

Det  A  N

ε

Slide thanks to Ray Mooney (modified)

Parse tree paths as classification features 

Path feature is

V ↑ VP ↑ S ↓ NP ↓ PP ↓ NP

which tends to 
be associated 
with no role

Slide courtesy Jason Eisner, with mild edits



Head words as features 
• Some roles prefer to be filled by certain kinds of NPs.
• This can give us useful features for classifying accurately:

– “John ate the spaghetti with chopsticks.”  (instrument)
 “John ate the spaghetti with meatballs.”   (patient)
 “John ate the spaghetti with Mary.”

• Instruments should be tools
• Patient of “eat” should be edible

– “John bought the car for $21K.”  (instrument)
 “John bought the car for Mary.”  (beneficiary)

• Instrument of “buy” should be Money
• Beneficiaries should be animate (things with desires)

– “John drove Mary to school in the van” 
    “John drove the van to work with Mary.”

• What do you think?
Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits



Uses of Semantic Roles
• Find the answer to a user’s question

– “Who” questions usually want Agents
– “What” question usually want Patients
– “How” and “with what” questions usually want Instruments
– “Where” questions frequently want Sources/Destinations.
– “For whom” questions usually want Beneficiaries
– “To whom” questions usually want Destinations

• Generate text
– Many languages have specific syntactic constructions that must or should 

be used for specific semantic roles.
• Word sense disambiguation, using selectional restrictions 

– The bat ate the bug.   (what kind of bat?  what kind of bug?)
• Agents (particularly of “eat”) should be animate – animal bat, not baseball bat
• Patients of “eat” should be edible – animal bug, not software bug

– John fired the secretary.
 John fired the rifle.

Patients of fire1 are different than patients of fire2
Slide thanks to Ray Mooney (modified)Slide courtesy Jason Eisner, with mild edits



• PropBank – coarse-grained roles of verbs
• NomBank – similar, but for nouns
• FrameNet – fine-grained roles of any word
• TimeBank – temporal expressions

Other Current Semantic Annotation Tasks 
(similar to SRL)

Slide courtesy Jason Eisner, with mild edits



We avenged the insult by setting fire to his village.

REVENGE FRAME

Avenger
Offender (unexpressed in this sentence)
Injury
Injured Party (unexpressed in this sentence)
Punishment

FrameNet Example 

a word/phrase that triggers the REVENGE frame

Slide thanks to CJ Fillmore (modified) Slide courtesy Jason Eisner, with mild edits



REVENGE FRAME
triggering words and phrases 

(not limited to verbs)

avenge, revenge, retaliate, get back at, pay back, get even, …

revenge, vengeance, retaliation, retribution, reprisal, …

vengeful, retaliatory, retributive; in revenge, in retaliation, …

take revenge, wreak vengeance, exact retribution, …

FrameNet Example 

Slide thanks to CJ Fillmore (modified) Slide courtesy Jason Eisner, with mild edits



Slide courtesy Jason Eisner
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Text Annotation Tasks
1. Classify the entire document

(“text categorization”)
2. Classify individual word tokens
3. Classify word tokens in a sequence
4. Identify phrases (“chunking”)
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits
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Generating new text

1. Question answering
2. Speech recognition (transcribe as text)
3. Machine translation
4. Text generation from semantics
5. Inflect, analyze, or transliterate words
6. Single- or multi-doc summarization

Slide courtesy Jason Eisner, with mild edits
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Deeper Information Extraction

1. Coreference resolution (within a document)

2. Entity linking  (across documents)

3. Event extraction and linking
4. Knowledge base population (KBP)
5. Recognizing texual entailment (RTE)

Slide courtesy Jason Eisner, with mild edits
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User interfaces

1. Dialogue systems
§ Personal assistance
§ Human-computer collaboration
§ Interactive teaching

2. Language teaching; writing help
3. Question answering
4. Information retrieval

Slide courtesy Jason Eisner, with mild edits
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Multimodal interfaces or modeling

1. Sign languages
2. Speech + gestures
3. Images + captions
4. Brain recordings, human reaction 

times

Slide courtesy Jason Eisner, with mild edits
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Discovering Linguistic Structure

1. Decipherment
2. Grammar induction
3. Topic modeling
4. Deep learning of word meanings
5. Language evolution (historical linguistics)
6. Grounded semantics

NLP automates things that humans do well, so that they can be done 
automatically on more sentences.  But this slide is about language analysis 
that’s hard even for humans.  Computational linguistics (like comp bio, etc.) 
can discover underlying patterns in large datasets: things we didn’t know!

Slide courtesy Jason Eisner, with mild edits



Today’s Learning Goals

• Define featurization and some examples
• Learn about NLP Tasks at a high-level:
– Document classification
– Part of speech tagging
– Syntactic parsing
– Entity id/coreference


