Overview of NLP Tasks and Featurization

Frank Ferraro – <u>ferraro@umbc.edu</u> CMSC 473/673

Some slides courtesy & adapted from Jason Eisner

Today's Learning Goals

- Define featurization and some examples
- Define some "classification" terminology
- Learn about NLP Tasks at a high-level, e.g.,
 - Document classification
 - Part of speech tagging
 - Syntactic parsing
 - Entity id/coreference

Helpful ML Terminology Recap (1)

 Model: the (computable) way you're going from inputs/representations of input to labels or scores

 Weights/parameters: collections of vectors that control how the model produces labels/scores from inputs. These are learned.

Helpful ML Terminology Recap (2)

- Model: the (computable) way you're going from inputs/representations of input to labels or scores
- Weights/parameters: collections of vectors that control how the model produces labels/scores from inputs. These are learned.
- Objective function: a function, whose variables are the weights of the model, that we numerically optimize in order to learn appropriate weights based on the labels/scores. The model's weights are adjusted.
- Evaluation function: a function that scores how correct the model's predicted labels are. The model's weights are not adjusted.
 - The evaluation and objective functions are (likely) different!

Helpful ML Terminology Recap (3)

Learning:

the process of adjusting the model's weights to learn to make good predictions.

Inference / Prediction / Decoding / Classification: the process of using a model's existing weights to make (hopefully!) good predictions

ML/NLP Framework

ML/NLP Framework for Learning

ML/NLP Framework for Prediction

First: Featurization / Encoding / Representation

ML Term: "Featurization"

The procedure of extracting **features** for some input

Often viewed as a K-dimensional vector function *f* of the input language *x*

$$f(x) = (f_1(x), \dots, f_K(x))$$

Each of these is a feature

(/feature function)

ML Term: "Featurization"

The procedure of extracting **features** for some input

Often viewed as a K-dimensional vector function *f* of the input language *x*

$$f(x) = (f_1(x), \dots, f_K(x))$$

In supervised settings, it can equivalently be viewed as a Kdimensional vector function f of the input language x and a potential label y

$$f(x, y) = (f_1(x, y), \dots, f_K(x, y))$$

Features can be thought of as "soft" rules

E.g., POSITIVE sentiments tweets *may* be more likely to have the word "happy"

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn *data* into *numbers*

Features that are not 0 are said to have fired

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn *data* into *numbers*

Features that are not 0 are said to have fired

You can define classes of features by *templating* (we'll come back to this!)

Often binary-valued (0 or 1), but can be real-valued

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
- 2. Linguistically-inspired features
- 3. Dense features via embeddings

- Bag-of-words (or bag-of-characters, bag-of-relations)
- 2. Linguisticallyinspired features
- Dense features via embeddings

- easy to define / extract
- sometimes still very useful

- Bag-of-words (or bag-of-characters, bag-of-relations)
- 2. Linguisticallyinspired features
- 3. Dense features via embeddings

- easy to define / extract
- sometimes still very useful
- harder to define
- helpful for interpretation
- depending on task: conceptually helpful
- currently, not freq. used

- Bag-of-words (or bag-of-characters, bag-of-relations)
- 2. Linguisticallyinspired features
- 3. Dense features via embeddings

- easy to define / extract
- sometimes still very useful
- harder to define
- helpful for interpretation
- depending on task: conceptually helpful
- currently, not freq. used
- harder to define
- harder to extract (unless there's a model to run)
- currently: freq. used

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify *unique* sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
- 3. Dense features via embeddings

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify *unique* sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
 - Define features from words, word spans, or linguisticbased annotations extracted from the document
- 3. Dense features via embeddings

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify *unique* sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
 - Define features from words, word spans, or linguistic-based annotations extracted from the document
- 3. Dense features via embeddings
 - Compute/extract a real-valued vector, e.g., from word2vec, ELMO, BERT, ...

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH NOT TECH

Let's make a core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction

ТЕСН Not Tech

With V word types, define V feature functions $f_i(x)$ as

→ f_i(x) =# of times word type *i* appears in document x Core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction

ТЕСН Not Tech

With V word types, define V feature functions $f_i(x)$ as

→ f_i(x) =# of times word type i appears in document x

 $f(x) = \left(f_i(x)\right)_i^v$

Core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

ТЕСН Not Tech

feature extraction

feature $f_i(x)$	value
alerts	1
assist	1
bombing	1
Boston	2
sniffle	0

Core assumption: the label can be predicted from counts of individual word types

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH NOT TECH

feature	weight
alerts	.043
assist	-0.25
bombing	0.8
Boston	-0.00001

feature $f_i(x)$	value
alerts	1
assist	1
bombing	1
Boston	2

w: weights

f(x): "bag of words"

Second: Classification Terminology

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification			
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}
Multi-task Classification	> 1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling Task 2: sentiment

Text Annotation Tasks

- 1. Classify the entire document
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

A demo (and note) about transformers.pipeline

transformers.pipeline(API, tutorial)

- Many predefined tasks
- Allows for easy-to-use inference (prediction)

transformers.pipeline and Inference

transformers.pipeline make the
inference portion much easier... sometimes

A demo (and note) about transformers.pipeline

transformers.pipeline(API, tutorial)

- Many predefined tasks
- Allows for easy-to-use inference (prediction)

But...

- what if your task isn't there?
- how do you decide what model to use?! (nearly 3k models in <u>https://huggingface.co/models</u>)
- what if you want to use another model?

$\mathsf{Tasks} \leftrightarrow \mathsf{pipeline}$

"Tasks" in this deck	≅ pipeline task= (not exhaustive)
Classify the entire document	text-classification (if there's a model w/ your labels)
Classify word tokens individually	text-classification
Classify word tokens in a sequence	token-classification
Identify phrases ("chunking")	token-classification
Syntactic annotation (parsing)	N/A, or token-classification or text- generation
Semantic annotation	N/A, or token-classification or text- generation
Text generation	 question-answering translation text-generation
Text Annotation Tasks

- Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation

Text Classification

. . .

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Text Classification

Assigning subject categories, topics, or genres Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input: a document a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

. . .

Output: a predicted class c from C

Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input:

a document linguistic blob a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

. . .

Output: a predicted class c from C

Text Classification: Hand-coded Rules?

Assigning subject categories, topics, or genres

Spam detection

Age/gender identification Language Identification Sentiment analysis

Authorship identification

Rules based on combinations of words or other features spam: black-list-address OR ("dollars" AND "have been selected")

. . .

Accuracy can be high If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?

Text Classification: Supervised Machine Learning

. . .

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input:

a document da fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ A training set of m hand-labeled documents $(d_1, c_1), ..., (d_m, c_m)$

Output:

a learned classifier **y** that maps documents to classes

Text Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input:

a document *d* a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ A training set of *m* hand-labeled documents $(d_1, c_1), ..., (d_m, c_m)$

Output:

a learned classifier **y** that maps documents to classes

Naïve Bayes Logistic regression Neural network Support-vector machines k-Nearest Neighbors

. . .

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- 4. Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

600.465 - Intro to NLP - J. Eisner

Word Sense Disambiguation (WSD)

Problem:

The company said the *plant* is still operating ...

 \Rightarrow (A) Manufacturing plant or

 \Rightarrow (B) Living plant

Training Data: Build a special classifier just for tokens of "plant"

Sense	Context
(1) Manufacturing	union responses to <i>plant</i> closures
** **	computer disk drive plant located in
""	company manufacturing <i>plant</i> is in Orlando
(2) Living	animal rather than <i>plant</i> tissues can be
** **	to strain microscopic <i>plant</i> life from the
»» »»	and Golgi apparatus of <i>plant</i> and animal cells

Test Data:

Sense	Context
???	vinyl chloride monomer <i>plant</i> , which is
???	molecules found in <i>plant</i> tissue from the

Slide courtesy Jason Eisner, with mild edits

WSD for Machine Translation

 $(English \rightarrow Spanish)$

Problem:

... He wrote the last sentence two years later ...

 \Rightarrow sentencia (legal sentence) or

 \Rightarrow *frase* (grammatical sentence)

Training Data: Build a special classifier just for tokens of "sentence"

Translation	Context
(1) sentencia	for a maximum sentence for a young offender
** **	of the minimum <i>sentence</i> of seven years in jail
** **	were under the sentence of death at that time
(2) frase	read the second sentence because it is just as
** **	The next sentence is a very important
** **	It is the second sentence which I think is at

Test Data:

Translation	Context
???	cannot criticize a sentence handed down by
???	listen to this sentence uttered by a former

Slide courtesy Jason Eisner, with mild edits

Accent Restoration in Spanish & French

Problem:

Input: ... deja travaille cote a cote ... ↓
Output: ... déjà travaillé côte à côte ...

Examples:

... appeler l'autre cote de l'atlantique ...

 \Rightarrow *côté* (meaning side) or

 \Rightarrow *côte* (meaning coast)

... une famille des pecheurs ...
 ⇒ pêcheurs (meaning fishermen) or
 ⇒ pécheurs (meaning sinners)

Accent Restoration in Spanish & French

Training Data:

Pattern	Context
(1) côté	du laisser de cote faute de temps
,, ,,	appeler l' autre cote de l' atlantique
,, ,,	passe de notre cote de la frontiere
(2) côte	vivre sur notre cote ouest toujours
»» »»	creer sur la cote du labrador des
"""	travaillaient cote a cote , ils avaient

Test Data:

Pattern	Context
???	passe de notre cote de la frontiere
???	creer sur la <i>cote</i> du labrador des

Slide courtesy Jason Eisner, with mild edits

Capitalization Restoration

Problem:

- ... FRIED CHICKEN, TURKEY SANDWICHES AND FROZEN ...
 - \Rightarrow *turkey* (the *bird*) or
 - \Rightarrow *Turkey* (the *country*)

Training Data:

Capitalization		Context
(1) turkey	OF FRIED CHICKEN,	TURKEY SANDWICHES AND FROZEN
** **	NTS A POUND , WHILE	TURKEY PRICES ROSE 1.2 CENTS
,, ,,	PLAY , REAL GRADE-A	TURKEY, WHICH ONLY A PRICE
(2) Turkey	INUNDATED EASTERN	TURKEY AFTER THE EARLIER
,, ,,	FEELINGS TOWARD	TURKEY SURFACED WHEN GREECE
,, ,,	THE CONTRACT WITH	TURKEY WILL PROVIDE OPPORTU

Test Data:

Capitalization		Context
???	NECK LIKE THAT OF A	TURKEY ON A CHOPPING BLOCK
???	PROBLEM IS THAT	TURKEY IS NOT A EUROPEAN

Slide courtesy Jason Eisner, with mild edits

Text-to-Speech Synthesis

Problem:

... slightly elevated *lead* levels ...

 $\Rightarrow l \epsilon d (as in lead mine)$ or

 \Rightarrow *li*:*d* (as in *lead role*)

Training Data:

Pronunciation	Context
(1) l∈d	it monitors the <i>lead</i> levels in drinking
,, ,,	conference on <i>lead</i> poisoning in
,, ,,	strontium and <i>lead</i> isotope zonation
(2) li:d	maintained their <i>lead</i> Thursday over
""	to Boston and <i>lead</i> singer for Purple
,, ,,	Bush a 17-point lead in Texas , only 3

Test Data:

Pronunciation	Context
???	median blood <i>lead</i> concentration was
???	his double-digit lead nationwide . The

Slide courtesy Jason Eisner, with mild edits

Spelling Correction

Problem:

... and he fired presidential aid/aide Dick Morris after ...

- \Rightarrow aid or
- \Rightarrow aide

Training Data:

Spelling	Context
(1) aid	and cut the foreign aid/aide budget in fiscal 1996
,, ,,	they offered federal <i>aid/aide</i> for flood-ravaged states
(2) aide	fired presidential aid/aide Dick Morris after
,, ,,	and said the chief aid/aide to Sen. Baker, Mr. John

Test Data:

Spelling	Context
???	said the longtime aid/aide to the Mayor of St
???	will squander the <i>aid/aide</i> it receives from the

Slide courtesy Jason Eisner, with mild edits

slide courtesy of D. Yarowsky (modified)

What features? Example: "word to [the] left [of correction]"

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0
covert	26	0
oppose	13	0
future	9	0
similar	6	0
presidential	0	63
chief	0	40
longtime	0	26
aids-infected	0	2
sleepy	0	1
disaffected	0	1
indispensable	2	1
practical	2	0
squander	1	0

Spelling correction using an n-gram language model ($n \ge 2$) would use words to left and right to help predict the true word.

Similarly, an HMM would predict a word's class using classes to left and right.

But we'd like to throw in all kinds of other features, too ...

Slide courtesy Jason Eisner, with mild edits

600

An assortment of possible cues ...

	Position	Collocation	led	li:d
N-grams	+1 L	lead level/N	219	0
	-1 W	narrow lead	0	70
(word,	+1 W	lead in	207	898
lemma,	-1w,+1w	of lead in	162	0
part-of-speech)	-1w,+1w	the lead in	0	301
	+1P,+2P	lead, <noun></noun>	234	7
Wide-context	±k w	<i>zinc</i> (in $\pm k$ words)	235	0
collocations	±k w	<i>copper</i> (in $\pm k$ words)	130	0
Verb-object	-V L	follow/V + lead	0	527
relationships	-V L	take/V + lead	1	665

generates a whole bunch	
of potential cues – use	
data to find out which	
ones work best	

	Frequency as	Frequency as	
Word to left	Aid	Aide	
foreign	718	1	
federal	297	0	
western	146	0	
provide	88	0	

An assortment of possible cues ...

		Position	Collocation	l∈d	li:d	This feature is
	N-grams	+1 L	lead level/N	219	0	relatively
	Ŭ	-1 W	narrow lead	0	70	weak, but weak
	(word,	+1 w	lead in	207	898	features are
	lemma,	-1w,+1w	of lead in	162	0	still useful,
	part-of-speech)	-1w,+1w	the lead in	0	301	especially since
		+1P,+2P	lead, <noun></noun>	234	7	very few
	Wide-cor text	±k w	<i>zinc</i> (in $\pm k$ words)	235	0	features will
	collocations	±k w	<i>copper</i> (in $\pm k$ words)	130	0	fire in a given
	Verb-object 🤇	-V L	follow/V + lead	0	527	context.
	relationships	-V L	take/V + lead	1	665	
				11		l
			1.49 follow/V + lead		\rightarrow	li:d
mor	and ranking		11.20 <i>zinc</i> (in $\pm k$ wor	ds)		led
mer		∕ ∖	11.20 $ $ 2 <i>inc</i> (in $\pm n$ wo	usj	\rightarrow	led
0	f all cues		10.66 <i>of</i> lead <i>in</i>		\Rightarrow	led
of all	these type	es 🔪	10.59 <i>the</i> lead <i>in</i>		⇒ĺ	li:d
			10.5 lead role			li:d
		r			, ,	5

slide courtesy of D. Yarowsky (modified)

Final decision list for *lead* (abbreviated)

List of all features, ranked by their weight.

(These weights are for a simple "decision list" model where the single highest-weighted feature that fires gets to make the decision all by itself.

However, a log-linear model, which adds up the weights of all features that fire, would be roughly similar.)

LogL	Evidence	Pronunciation
11.40	follow/V+lead	\Rightarrow li:d
11.20	<i>zinc</i> (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
10.59	the lead in	\Rightarrow li:d
10.51	lead role	\Rightarrow li:d
10.35	<i>copper</i> (in $\pm k$ words)	\Rightarrow l ϵ d
10.28	lead time	\Rightarrow li:d
10.24	lead levels	\Rightarrow l ϵ d
10.16	lead poisoning	\Rightarrow l ϵ d
8.55	big lead	\Rightarrow li:d
8.49	narrow lead	\Rightarrow li:d
7.76	take/V + lead	\Rightarrow li:d
5.99	lead, NOUN	\Rightarrow l ϵ d
1.15	lead in	\Rightarrow li:d
	000	

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

Part of Speech Tagging

- We could treat tagging as a token classification problem
 - Tag each word independently given features of context
 - And features of the word's spelling (suffixes, capitalization)

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

DT

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to t

600.465 - Intro to NLP - J. Eisnei

Part of Speech Tagging

- We could treat tagging as a token classification problem
 - Tag each word independently given features of context
 - And features of the word's spelling (suffixes, capitalization)
- Or we could use an HMM:
 - The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.
- Combine these two ideas??
 - We'd like rich features (e.g., in a log-linear model), but we'd also like our feature functions to depend on adjacent tags.
 - So, the problem is to predict **all** tags together.

Supervised Learning Methods

- Easy to build a "yes" or "no" predictor from supervised training data
 - Plenty of software packages to do the learning & prediction
 - Lots of people in NLP never go beyond this \bigcirc
- Similarly, easy to build a system that chooses from a small finite set
 - Basically the same deal
 - But runtime goes up linearly with the size of the set, unless you're clever (HW3)
- Harder to predict the best string or tree (set is exponentially large or infinite)
Can We {Do Better? {Be More Expressive?

See: CMSC 678 or CMSC 691 (Prob. & Graphical ML)

Can We Use Neural, Recurrent Methods?

observe these words one at a time

Supervised Learning Methods

- Easy to build a "yes" or "no" predictor from supervised training data
 - Plenty of software packages to do the learning & prediction
 - Lots of people in NLP never go beyond this \bigcirc
- Similarly, easy to build a system that chooses from a small finite set
 - Basically the same deal
 - But runtime goes up linearly with the size of the set, unless you're clever (HW3)
- Harder to predict the best string or tree (set is exponentially large or infinite)
 - In the best case, requires dynamic programming; you might have to write your own code
 - But finite-state or CRF toolkits may find the best string for you
 - And you could modify someone else's parser to pick the best tree
 - An algorithm for picking the best can usually be turned into a learning algorithm
 - You may need to rely on **approximate** solutions (e.g., via **beam search**)

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

600.465 - Intro to NLP - J. Eisner

Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of predefined categories of interest

Person names

Organizations (companies, government organisations, committees, etc)

Locations (cities, countries, rivers, etc)

Date and time expressions

Measures (percent, money, weight etc), email addresses, Web addresses, street addresses, etc.

Domain-specific: names of drugs, medical conditions, names of ships, bibliographic references etc.

Named Entity Recognition

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said.
United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

NE Types

Туре	Tag	Sample Categories
People	PER	Individuals, fictional characters, small groups
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes, seas
Geo-Political Entity	GPE	Countries, states, provinces, counties
Facility	FAC	Bridges, buildings, airports
Vehicles	VEH	Planes, trains, and automobiles

Туре	Example
People	<i>Turing</i> is often considered to be the father of modern computer science.
Organization	The <i>IPCC</i> said it is likely that future tropical cyclones will become more intense.
Location	The Mt. Sanitas loop hike begins at the base of Sunshine Canyon.
Geo-Political Entity	Palo Alto is looking at raising the fees for parking in the University Avenue dis-
	trict.
Facility	Drivers were advised to consider either the Tappan Zee Bridge or the Lincoln
	Tunnel.
Vehicles	The updated Mini Cooper retains its charm and agility.

Slide courtesy Jason Eisner, with mild edits

Example: Information Extraction

IE

As a task:

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill</u> <u>Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free</u> <u>Software Foundation</u>, countered saying...

Slide from Chris Brew, adapted from slide by William Cohen

NAME	TITLE	ORGANIZATI
Bill Gates	CEO	Microsoft
Bill Veghte	VP	Microsoft
Richard Stallman	founder	Free Soft

Slide courtesy Jason Eisner, with mild edits

Phrase Types to Identify for IE

Closed set

U.S. states

He was born in <u>Alabama</u>...

The big <u>Wyoming</u> sky...

Complex pattern

U.S. postal addresses

University of Arkansas P.O. Box 140 Hope, AR 71802

Headquarters: <u>1128 Main Street, 4th Floor</u> <u>Cincinnati, Ohio 45210</u>

Slide from Chris Brew, adapted from slide by William Cohen

<u>Regular set</u>

J.S. phone numbers

Phone: (413) 545-1323

The CALD main office can be reached at <u>412-268-1299</u>

Ambiguous patterns, needing context and many sources of evidence

Person names

...was among the six houses sold by <u>Hope Feldman</u> that year.

<u>Pawel Opalinski</u>, Software Engineer at WhizBang Labs.

Identifying phrases

- A key step in IE is to identify relevant phrases
 - Named entities
 - As on previous slides
 - Relationship phrases
 - "said", "according to", ...
 - "was born in", "hails from", ...
 - "bought", "hopes to acquire", "formed a joint agreement with", ...
 - Simple syntactic chunks (e.g., non-recursive NPs)
 - "Syntactic chunking" sometimes done before (or instead of) parsing
 - Also, "segmentation": divide Chinese text into words (no spaces)
- So, how do we learn to mark phrases?

Reduce to a tagging problem ...

- The IOB encoding (Ramshaw & Marcus 1995):
 - B_X = "beginning" (first word of an X)
 - I_X = "inside" (non-first word of an X)
 - O = "outside" (not in any phrase)
 - Does not allow overlapping or recursive phrases

... United Airlines said Friday it has increased ... B_ORG I_ORG 0 0 0 0 0 ... the move , spokesman Tim Wagner said ... O O O O B_PER I_PER O What if this were tagged as B_ORG instead?

Example applications for IE

- Classified ads
- Restaurant reviews
- Bibliographic citations
- Appointment emails
- Legal opinions
- Papers describing clinical medical studies

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

600.465 - Intro to NLP - J. Eisner

The old man the boat .

The old man the boat .

The complex houses married and single soldiers and their families.

The complex houses married and single soldiers and their families.

[The rat [the cat [the dog chased] killed] ate the malt].

Language can have recursive patterns

Syntactic parsing can help identify those

Context Free Grammar

 $S \rightarrow NP \ VP \qquad PP \rightarrow P \ NP$ $NP \rightarrow Det \ Noun \qquad AdjP \rightarrow Adj \ Noun$ $NP \rightarrow Noun \qquad VP \rightarrow V \ NP$ $NP \rightarrow Det \ AdjP \qquad Noun \rightarrow Baltimore$ $NP \rightarrow NP \ PP \qquad \dots$

Set of rewrite rules, comprised of terminals and non-terminals

Generate from a Context Free Grammar

T = Cell[N][N+1]

for($j = 1; j \le N; ++j$) {

You may get to use a dynamic program

T[j-1][j].add(X for non-terminal X in **G** if $X \rightarrow word_j$)

```
for(width = 2; width \leq N; ++width) {
  for(start = 0; start < N - width; ++start) {</pre>
     end = start + width
                                                         Х
    for(mid = start+1; mid < end; ++mid) {</pre>
       for(non-terminal Y : T[start][mid]) {
          for(non-terminal Z : T[mid][end]) {
            T[start][end].add(X for rule X \rightarrow Y Z : G)
```


And Go From Syntax to Shallow Semantics

http://corenlp.run/ (constituency & dependency)

https://github.com/hltcoe/predpatt

a sampling of efforts

http://openie.allenai.org/

http://www.cs.rochester.edu/research/knext/browse/ (constituency trees)

http://rtw.ml.cmu.edu/rtw/

Supervised Learning Methods

- Easy to build a "yes" or "no" predictor from supervised training data
 - Plenty of software packages to do the learning & prediction
 - Lots of people in NLP never go beyond this \bigcirc
- Similarly, easy to build a system that chooses from a small finite set
 - Basically the same deal
 - But runtime goes up linearly with the size of the set, unless you're clever (HW3)
- Harder to predict the best string or tree (set is exponentially large or infinite)
 - In the best case, requires dynamic programming; you might have to write your own code
 - But finite-state or CRF toolkits may find the best string for you
 - And you could modify someone else's parser to pick the best tree
 - An algorithm for picking the best can usually be turned into a learning algorithm
 - You may need to rely on **approximate** solutions (e.g., via **beam search**)
- Hardest if your features look at "non-local" properties of the string or tree
 - Now dynamic programming won't work (or will be something awful like $O(n^9)$)
 - You need some kind of approximate search
 - Can be harder to turn approximate search into a learning algorithm
 - Still, this is a standard preoccupation of machine learning ("structured prediction," "graphical models")

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

600.465 - Intro to NLP - J. Eisner

Semantic Role Labeling (SRL)

- For each <u>predicate</u> (e.g., verb)
 - 1. find its arguments (e.g., NPs)
 - 2. determine their semantic roles

John drove Mary from Austin to Dallas in his Toyota Prius.

The hammer broke the window.

- agent: Actor of an action
- patient: Entity affected by the action
- source: Origin of the affected entity
- destination: Destination of the affected entity
- instrument: Tool used in performing action.
- beneficiary: Entity for whom action is performed

As usual, can solve as classification ...

- Consider one verb at a time: "bit"
- Classify the role (if any) of each of the 3 NPs

Color Code: not-a-role agent patient source destination instrument beneficiary

Slide courtesy Jason Eisner, with mild edits

Slide thanks to Ray Mooney (modified)

Parse tree paths as classification features

Path feature is $V \uparrow VP \uparrow S \downarrow NP$ which tends to be associated with agent role

Slide thanks to Ray Mooney (modified)

Slide courtesy Jason Eisner, with mild edits

Parse tree paths as classification features

Path feature is $V \uparrow VP \uparrow S \downarrow NP \downarrow PP \downarrow NP$

which tends to be associated with no role

Slide thanks to Ray Mooney (modified)

Slide courtesy Jason Eisner, with mild edits
Head words as features

- Some roles prefer to be filled by certain kinds of NPs.
- This can give us useful features for classifying accurately:
 - "John <u>ate</u> the spaghetti with chopsticks." (instrument)
 "John <u>ate</u> the spaghetti with meatballs." (patient)

"John ate the spaghetti with Mary."

- Instruments should be tools
- Patient of "eat" should be edible
- "John <u>bought</u> the car for \$21K." (instrument)
 "John <u>bought</u> the car for Mary." (beneficiary)
 - Instrument of "buy" should be Money
 - Beneficiaries should be animate (things with desires)
- "John drove Mary to school in the van"
 - "John drove the van to work with Mary."
 - What do you think?

Slide courtesy Jason Eisner, with mild edits

Slide thanks to Ray Mooney (modified)

Uses of Semantic Roles

- Find the answer to a user's question
 - "Who" questions usually want Agents
 - "What" question usually want Patients
 - "How" and "with what" questions usually want Instruments
 - "Where" questions frequently want Sources/Destinations.
 - "For whom" questions usually want Beneficiaries
 - "To whom" questions usually want Destinations
- Generate text
 - Many languages have specific syntactic constructions that must or should be used for specific semantic roles.
- Word sense disambiguation, using selectional restrictions
 - The **bat** <u>ate</u> the **bug**. (what kind of bat? what kind of bug?)
 - Agents (particularly of "eat") should be animate animal bat, not baseball bat
 - Patients of "eat" should be edible animal bug, not software bug
 - John <u>fired</u> the secretary.

John <u>fired</u> the rifle.

Patients of fire₁ are different than patients of fire₂

Slide courtesy Jason Eisner, with mild edits

Other Current Semantic Annotation Tasks (similar to SRL)

- PropBank coarse-grained roles of verbs
- NomBank similar, but for nouns
- FrameNet fine-grained roles of any word
- TimeBank temporal expressions

FrameNet Example

FrameNet Example

REVENGE FRAME triggering words and phrases (not limited to verbs)

avenge, revenge, retaliate, get back at, pay back, get even, ...

revenge, vengeance, retaliation, retribution, reprisal, ...

vengeful, retaliatory, retributive; in revenge, in retaliation, ...

take revenge, wreak vengeance, exact retribution, ...

🕰 on nnon 12/61

.

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2. Classify individual word tokens
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

Generating new text

- 1. Question answering
- 2. Speech recognition (transcribe as text)
- 3. Machine translation
- 4. Text generation from semantics
- 5. Inflect, analyze, or transliterate words
- 6. Single- or multi-doc summarization

Deeper Information Extraction

- 1. Coreference resolution (within a document)
- 2. Entity linking (across documents)
- 3. Event extraction and linking
- 4. Knowledge base population (KBP)
- 5. Recognizing texual entailment (RTE)

User interfaces

- 1. Dialogue systems
 - Personal assistance
 - Human-computer collaboration
 - Interactive teaching
- 2. Language teaching; writing help
- 3. Question answering
- 4. Information retrieval

Multimodal interfaces or modeling

- 1. Sign languages
- 2. Speech + gestures
- 3. Images + captions
- 4. Brain recordings, human reaction times

<u>NLP</u> automates things that humans do well, so that they can be done automatically on more sentences. But this slide is about language analysis that's hard even for humans. <u>Computational linguistics</u> (like comp bio, etc.) can discover underlying patterns in large datasets: things we didn't know!

Discovering Linguistic Structure

- 1. Decipherment
- 2. Grammar induction
- 3. Topic modeling
- 4. Deep learning of word meanings
- 5. Language evolution (historical linguistics)
- 6. Grounded semantics

Today's Learning Goals

- Define featurization and some examples
- Learn about NLP Tasks at a high-level:
 - Document classification
 - Part of speech tagging
 - Syntactic parsing
 - Entity id/coreference