
Unsupervised 
Learning: Clustering

Beyond K-means

Some material adapted from slides by Andrew Moore, CMU
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(2) Hierarchical clustering

Two approaches:
•Agglomerative

–Bottom-up approach: elements start as 
individual clusters & clusters are merged 
as one moves up the hierarchy

•Divisive
–Top-down approach: elements start as a 

single cluster & clusters are split as one 
moves down the hierarchy



Hierarchical Clustering
The approaches do a recursive partitioning / 

merging of a data set
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•Tree structure representing 
all data partitionings

•Constructed as clustering 
proceeds

Dendogram

Nine items

https://en.wikipedia.org/wiki/Dendrogram


• Tree structure representing 
all data partitionings

• Constructed as clustering 
proceeds

• Get a K-clustering by looking 
at connected components at 
any given level

• Often binary dendograms, 
but n-ary ones easy to get 
with minor algorithm 
changes

Dendogram

Four clusters at this level 

https://en.wikipedia.org/wiki/Dendrogram


•Tree structure representing 
all data partitionings

•Constructed as clustering 
proceeds

•Get a K-clustering by looking 
at connected components at 
any given level

•Often binary dendograms, 
but n-ary ones easy to get 
with minor algorithm 
changes

Dendogram

Two clusters at this level 

https://en.wikipedia.org/wiki/Dendrogram


Hierarchical clustering advantages
•Need not specify number of clusters

–You can get from 1 to n given n data points
•Good for data visualization

– See how data points interact at many levels
– Can view data at multiple granularity levels
– Understand how all points interact

•Can generate all the K clusterings/partitions
•But which is the best clustering?

– Algorithms using homogeneity measures of the 
clusters are often used



Divisive hierarchical clustering
• Top-down technique to find best partitioning of 

data, generally exponential in time
• Common approach:

– Let C be a set of clusters
– Initialize C to be a one-clustering of data
– While there exists a cluster c in C

• remove c from C
• partition c into 2 clusters (c1 and c2 ) using a flat 

clustering algorithm (e.g., k-means with k=2)
• Add to c1 and c2 C



Divisive clustering



Divisive clustering

start with one 
cluster



Divisive clustering

use flat clustering to
split into two clusters (e.g., 

using K-means with k=2)



Divisive clustering



Divisive clustering

split using flat 
clustering, 
e.g., K-means



Divisive clustering
split using flat clustering

split using flat 
clustering, 
e.g., K-means



Divisive clustering

Stop when clusters reach some constraint, 
e.g., all of size 1
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Hierarchical Agglomerative Clustering

•Let C be a set of clusters
•Initialize C to all points/docs as separate clusters
•While C contains more than one cluster

– find c1 and c2 in C that are closest together
– remove c1 and c2 from C
– merge c1 and c2 and add resulting cluster to C

•Merging history forms a binary tree or hierarchy
•Q: How to measure distance between clusters?



Distance between clusters
Single-link: Similarity of the most similar 
(single-link)

€ 

max
l∈L,r∈R

sim(l,r)
Weka: linkType=SINGLE 



Distance between clusters
Complete-link:  Similarity of the “furthest” 
points, the least similar

€ 

min
l∈L,r∈R

sim(l,r)

Weka: linkType=COMPLETE 



Distance between clusters
Centroid: Clusters whose centroids 
(centers of gravity) are the most similar
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Distance between clusters
Average-link: Average similarity between all 
pairs of elements
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Weka: linkType=AVERAGE 



Default SINGLE cluster distance gives poor results on IRIS



AVERAGE cluster distance measure improves results for IRIS



Knowing when to stop

•General issue is knowing when to stop 
merging/splitting a cluster

•We may have a problem specific desired 
range of clusters (e.g., 3-6)

•There are general metrics for cluster quality
– E.g., Silhouette coefficient and Dunn Index
– Use one of these to decide where to stop

•There are also domain specific heuristics for 
cluster quality

https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://en.wikipedia.org/wiki/Dunn_index


(3) DBSCAN Algorithm
•Density-Based Spatial Clustering of

Applications with Noise
•It clusters close points based on a distance and 

a minimum number of points
– Key parameters: eps=maximum distance between two 

points; minPoints= minimal cluster size

•Marks points in low-density regions as outliers
•Needn’t specify number of clusters expected
•Fast
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DBSCAN Example

This gif (in ppt) shows how DBSCAN grows four clusters 
and identifies the remaining points as outliers 



Visualizing DBSCAN
https://bit.ly/471dbscan

https://bit.ly/471dbscan


10 clustering algorithms on 6 datasets with scikit-learn

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


Clustering Summary
•Clustering useful & effective for many tasks
•K-means clustering one of simplest & fastest 

techniques, but
– Requires knowing how many clusters is right
– Doesn’t handle outliers well

•Hierarchical clustering slower & more general, 
but needs metric to know when to stop

•There are many other clustering options
– DBSCAN is just one of them
– Experiment to see what’s best for your application


