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Decision Trees (DTs)

•Supervised learning method used for 
classification and regression

•Given a set of training tuples, learn model 
to predict one value from the others
– Learned value typically a class (e.g., goodRisk)

• Resulting model is simple to understand, 
interpret, visualize, and apply

•One of the oldest ML algorithms, but still 
useful for many problems

https://en.wikipedia.org/wiki/Decision_tree_learning


Learning a Concept

Shape Attributes
• Size: large, small
• Color: red, green, blue
• Shape: square, circle

The red groups are nega6ve examples, blue posi6ve

Task
Classify new object with 
a size, color & shape as 
positive or negative



Training data

Size Color Shape class
Large Green Square Negative
Large Green Circle Negative
Small Green Square Positive
Small Green Circle Positive
Large Red Square Positive
Large Red Circle Positive
Small Red Square Positive
Small Red Circle Positive
Large Blue Square Negative
Small Blue Square Positive
Large Blue Circle Positive
Small Blue Circle Positive

attributes

example
instances

Attribute to 
be learned



A decision tree-induced partition
The red groups are nega@ve examples, blue posi@ve

Negative things are  
big, green shapes and 
big, blue squares



Learning decision trees
• Goal: Build decision tree to classify examples as 

posiEve or negaEve instances of concept using 
supervised learning from training data

• A decision tree is a tree in which
– non-leaf nodes have an

a(ribute (feature)
– leaf nodes have a classifica5on

(+ or -)
– arcs have a possible value of

its a(ribute 
• GeneralizaEon: allow for >2 classes
– e.g., classify stocks as {sell, hold, buy}

Color
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Expressiveness of Decision Trees
• Can express any funcEon of input aLributes, e.g., for 

Boolean funcEons, truth table row → path to leaf:

• There’s a consistent decision tree for any training set 
with one path to leaf for each example, but it 
probably won't generalize to new examples

• Prefer more compact decision trees



Inductive learning and bias

• Suppose that we want to learn a function f(x) = y and 
we’re given sample (x,y) pairs, as in figure (a)

• Can make several hypotheses about f, e.g.: (b), (c) & (d)
• Preference reveals learning technique bias, e.g.:

– prefer piece-wise linear functions (b)
– prefer a smooth function (c)
– prefer a simpler function and treat outliers as noise (d)

https://en.wikipedia.org/wiki/Piecewise_linear_function


Preference bias: Occam’s Razor

•William of Ockham (1285-1347)
– non sunt multiplicanda entia praeter necessitatem
– entities are not to be multiplied beyond necessity 

•Simplest consistent explanation is the best
•Smaller decision trees correctly classifying 

training examples preferred over larger ones
•Finding the smallest decision tree is NP-hard, so 

we use algorithms that find reasonably small 
ones

https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/William_of_Ockham


R&N’s restaurant domain
•Develop decision tree modeling customers who 

decide whether to wait for a table or leave
•Two classes: wait, leave
•Ten attributes: Alternative available? Bar in 

restaurant? Is it Friday? Are we hungry? How full
is restaurant? How expensive? Is it raining? Do 
we have reservation? What type of restaurant is 
it? Estimated waiting time?

•Set of 12 training examples
•~7,000 possible cases (i.e., combinations of values)



Attribute-based representations

•Examples described by a1ribute values (Boolean, discrete, con:nuous), 
e.g., situa:ons where will/won't wait for a table

•Classifica:on of examples is posi:ve (T) or nega:ve (F)
•Serves as a training set



A decision tree
from introspection

= wait
= leave



Issues
•It’s like 20 questions
•We can generate many decision trees 

depending on what attributes we ask about 
and in what order

•How do we decide?
•What makes one decision tree better than 

another: number of nodes? number of 
leaves? maximum depth?

https://en.wikipedia.org/wiki/Twenty_Questions


ID3 / C4.5 / J48 Algorithm
•Greedy algorithm for decision tree construction 

developed by Ross Quinlan 1987-1993 
•Top-down construction of tree by recursively 

selecting best attribute to use at current node
– Once attribute selected for current node, generate 

child nodes, one for each possible attribute value
– Partition examples using values of attribute, & assign 

these subsets of examples to the child nodes
– Repeat for each child node until examples associated 

with a node are all positive or negative

https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/C4.5_algorithm
https://en.wikipedia.org/wiki/Ross_Quinlan


Choosing best attribute
•Key problem: choose aKribute to split given set of 

examples
•PossibiliMes for choosing aKribute:

–Random: Select one at random 
–Least-values: one with smallest # of possible values 
–Most-values: one with largest # of possible values 
–Max-gain: one with largest expected informa(on gain
–Gini impurity: one with smallest gini impurity value

•The last two measure the homogeneity of the 
target variable within the subsets

•The ID3 and C4.5 algorithms uses max-gain

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Decision_tree_learning


A Simple Example
For this data, is it better to start the tree by 
asking about the restaurant type or its 
current number of patrons?



Choosing an a=ribute
Idea: good attribute choice splits examples into 
subsets that are as close to all of one type as 
possible, e.g., for binary attributes, all T or all F

Which is better: asking about Patrons or Type?

stay
leave

Initially half 
T and half F

A/er asking 
Type, 4 sets



Choosing an attribute
Idea: good attribute choice splits examples into 
subsets that are as close to all of one type as 
possible, e.g., for binary attributes, all T or all F

• Patrons: for six examples we know the answer and for 
six we can predict with probability 0.67

• Type: our prediction is no better than chance (0.50)

stay
leave

Initially half 
T and half F

After asking 
Type, 4 sets



Choosing Patrons yields more information

The ID3 algorithm used this to decide what attribute to 
ask about next when building a decision tree



ID3-induced 
decision tree



Compare the two Decision Trees

Human-generated decision tree ID3-generated decision tree

• Intuitively, ID3 tree looks better: it’s shallower and has 
fewer nodes
• ID3 uses information theory to decide which question is 

best to ask next



Information theory 101
•Sprang fully formed from Claude Shannon’s 

seminal work: Mathematical Theory of
Communication in 1948

•Intuitions
– Common words (a, the, dog) shorter than less 

common ones (parlimentarian, foreshadowing)
– Morse code: common letters have shorter encodings

•Information inherent in data/message (inform-
ation entropy) measured in the number of bits 
needed to store/send using an optimal encoding

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/Information_entropy
http://en.wikipedia.org/wiki/Information_entropy


Informa0on theory 101
•Information entropy ... tells how much 

information there is in a message
•More uncertain it is, more information it contains
•How much information is in these messages

– The sun rose today!   
– It’s sunny today in Honolulu!
– The coin toss is heads!
– It’s sunny today in Seattle!
– Life discovered on Mars!

None

A lot

https://simple.wikipedia.org/wiki/Information_entropy


Information theory 101
•For n equally probable possible messages or data 

values, each has probability 1/n
•Def: Information of a message is –log2(p) = log2(n)

e.g., with 16 messages, then log(16) = 4 and we need 4 
bits to identify/send each message

• What if the messages are not equally likely?
•For probability distribution P (p1,p2…pn) for n mes-

sages, its information (H or information entropy) is:

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

http://en.wikipedia.org/wiki/Entropy_(information_theory)


Information entropy of a distribution
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
• Examples:

– If P is (0.5, 0.5) then I(P) = 0.5*1 + 0.5*1 = 1
– If P is (0.67, 0.33) then I(P) = -(2/3*log(2/3) + 

1/3*log(1/3)) = 0.92
– If P is (1, 0) then I(P) = 1*1 + 0*log(0) = 0

• More uniform probability distribution, greater its 
information: more information is conveyed by a 
message telling you which event actually occurred

• Entropy is the average number of bits/message 
needed to represent a stream of messages



Example: Huffman code
•In 1952, MIT student David Huffman devised 

(for a homework assignment!) a coding scheme 
that’s optimal when all data probabilities are 
powers of 1/2

•A Huffman code can be built as followings:
– Rank symbols in order of probability of occurrence
– Successively combine 2 symbols of lowest probability 

to form new symbol; eventually we get binary tree 
where each node is probability of nodes below

– Trace path to each leaf, noting direction at each node

https://en.wikipedia.org/wiki/David_A._Huffman
https://en.wikipedia.org/wiki/Huffman_coding


Huffman code example
M   P
A  .125
B  .125
C  .25
D  .5

• Four possible messages (A, B, C, D) 
each with a probability of being sent
•We could encode them using 2 bits per 

message: A=00, B=01, C=10, D=11
• Sending 1,000 messages will require 

2,000 bits
•We can do better with a Huffman code!

.5.125.125

A CB D
.25



Huffman code example

M   P
A  .125
B  .125
C  .25
D  .5

.5.5

1

.125.125

.25

A

C

B

D
.25

0 1

0

0 1

1
• Using this code for many 

messages (A,B,C, or D), average 
bits/message will approach 1.75

• Sending 1000 messages will need 
~1750 bits, not 2000 bits

msg code length prob bits
A 000 3 .125 .375
B 001 3 .125 .375
C 01 2 .250 .500
D 1 1 .500 .500

Average length 1.75



Information gain in knowing an attribute

•Gain(X,T) = Info(T) - Info(X,T) is difference of
– Info(T): info needed to identify T’s class 
– Info(X,T): info needed to identify T’s class after 

attribute X’s value known

•This is gain in information due to knowing 
value of attribute X

•Used to rank attributes and build DT where 
each node uses attribute with greatest gain of 
those not yet considered in path from root

•goal: create small DTs to minimize questions



InformaDon Gain
stay
leave

• IniMally half of examples are stay and half leave
• AOer knowing Type?, sMll half are stay and half leave

We are no wiser for knowing Type ☹
• AOer knowing Patrons?, we know the class for six and know a 

likely class for the other six
We’ve learned something, butneed more info if Patrons=Full 😊

initial



InformaDon Gain
stay
leave

I = .5*log2(.5) + .5*log2(.5) = 0.5+0.5 => 1.0

I=0; P=1/6
I=0; P=1/3

I=(1/3*log2(1/3)+2/3*log2(2/3); P=1/2 => 0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 => 0.0

• Information gain for asking Patrons = 0.54, for asking Type = 0
• Note: If only one of the N categories has any instances, the 

information entropy is always 0

Information gain = 1 - 0.46 =>  0.54

I = 6/6*1 => 1.0



How well does it work?

Case studies showed that decision trees ofen 
at least as accurate as human experts
– Study for diagnosing breast cancer had humans 

correctly classifying examples 65% of the Eme; DT 
classified 72% correct

– BriEsh Petroleum designed DT for gas-oil separaEon 
for offshore oil plalorms that replaced an earlier 
rule-based expert system

– Cessna designed an airplane flight controller using 
90,000 examples and 20 aLributes per example



Extensions of ID3
• Using other selection metric gain ratios, e.g., gini

impurity metric
• Handle real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of 

performance
• C4.5: extension of ID3 accounting for unavailable 

values, continuous attribute value ranges, pruning 
of decision trees, rule derivation, etc.

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning


Gini Impurity Metric of a Dataset
• Number between 0-0.5, lower is better
• Indicates likelihood of new data item being misclassified if 

given random class label according to class distribution
• Very similar to information gain, slightly faster to compute

DT to decide if someone a good credit risk based on 4 properties



Real-valued data?

•Many ML systems work only on nominal data
•We often classify data into one of 4 basic types:
– Nominal data is named, e.g., representing restaurant 

type as Thai, French, Italian, Burger
– Ordinal data has a well-defined sequence: small, 

medium, large
– Discrete data is easily represented by integers
– Continuous data is captured by real numbers

•There are others, like intervals: age 0-3, 3-5, …
•Handling some types may need new techniques



Real-valued => Nominal Data
For ML systems that expect nominal data:
•Select thresholds defining intervals so each 

becomes a discrete value of attribute
•Use heuristics: e.g., always divide into quartiles
•Use domain knowledge: e.g., divide age into 

infant (0-2), toddler (2-5), school-aged (5-8)
• Or treat this as another learning problem

– Try different ways to discretize continuous variable; 
see which yield better results w.r.t. some metric

– E.g., try midpoint between every pair of values



Noisy data L?
ML systems must deal with noise in training data
•Two examples have same ahribute/value pairs, 

but different classifica@ons 
•Some ahribute values wrong due to errors in 

the data acquisi@on or preprocessing phase 
•Classifica@on is wrong (e.g., + instead of -) 

because of some error 
•Some ahributes irrelevant to decision-making, 

e.g., color of a die is irrelevant to its outcome
Bias in the training data is a related problem



Bias: If it’s cloudy, it’s a tank
• You may hear about a ML system designed to 

classify images into those with & without tanks
–It was trained on N images with tanks and M images with 

no tanks
–But the positive examples were all taken on a cloudy day; 

the negative on a sunny one

• System worked well, but had learned to detect the 
weather L

• The story is too good to be true; see Neural Net 
Tank Urban Legend

• But avoiding bias when training an AI or ML system 
is a real problem!

https://www.gwern.net/Tanks
https://www.gwern.net/Tanks


OverfiLng L
•Overfitting occurs when a statistical

model describes random error or noise instead 
of underlying relationship

•If hypothesis space has many dimensions (many 
attributes) we may find meaningless regularity
in data irrelevant to true distinguishing features
e.g.: Students with an m in first name, born in July, & 
whose SSN digits sum to a prime number get better 
grades in AI

•If we have too little training data, even a 
reasonable hypothesis space can overfit

https://en.wikipedia.org/wiki/Overfitting


Avoiding OverfiLng
•Remove obviously irrelevant features

– E.g., remove ‘year observed’, ‘month 
observed’, ‘day observed’, ‘observer 
name’from the attributes used

•Get more training data
•Pruning lower nodes in a decision tree

– E.g., if info. gain of best attribute at a node is 
below a threshold, stop and make this node 
a leaf rather than generating children nodes



Pruning decision trees
• Pruning a decision tree is done by replacing a whole 

subtree by a leaf node
• Replacement takes place if the expected error rate in 

the subtree is greater than in the single leaf, e.g.,
– Training data: 1 training red success and 2 training blue failures
– Test data: 3 red failures and one blue success
– Consider replacing subtree by a single node indicaMng failure 

• Arer replacement, only 2 errors instead of 4

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Test Pruned



ConverPng decision trees to rules
•Easy to get rules from decision tree: write rule 

for each path from the root to leaf
•Rule’s left-hand side built from the label of the 

nodes & labels of arcs
•Resulting rules set can be simplified:

– Let LHS be the rule’s left hand side (condition part)
– LHS’ obtained from LHS by eliminating some conditions 
– Replace LHS by LHS' in this rule if the subsets of the 

training set satisfying LHS and LHS' are equal
– A rule may be eliminated by using meta-conditions such 

as “if no other rule applies”



Summary: decision tree learning
• SEll widely used learning methods in pracEce for 

problems with relaEvely few features
• Strengths

– Fast and easy to implement
– Simple model: translate to a set of rules
– Useful: empirically valid in many commercial products
– Robust: handles noisy data
– Explainable: easy for people to understand

• Weaknesses
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors 
– Non-incremental, adding one new feature requires 

rebuilding enMre tree


