
Logical
Inference 2

Rule-based reasoning
Chapter 9

Some material adopted from notes by Andreas
Geyer-Schulz,, Chuck Dyer, and Mary Getoor

9.4.2

Automated inference for FOL
•Automated inference for FOL is harder than PL

– Variables can take on an infinite number of possible
values from their domains

– Hence there are potentially an infinite number of
ways to apply the Universal Elimination rule

•Godel's Completeness Theorem says that FOL
entailment is only semi-decidable
– If a sentence is true given a set of axioms, there is a

procedure that will eventually determine this
– If a sentence is false, there’s no guarantee a

procedure will ever discover this — it may never halt

Generalized Modus Ponens (GMP)
•Modus Ponens: P, P=>Q |= Q
•Generalized Modus Ponens extends this to

rules in FOL
•Combines And-Introduction, Universal-

Elimination, and Modus Ponens, e.g.
– given P(c) , Q(c) , "x P(x)ÙQ(x) ® R(x)
– derive R(c)

•Must deal with
–more than one condition on rule’s left side
–variables

Often rules restricted to Horn clauses

•A Horn clause is a sentence of the form:
P1(x) Ù P2(x) Ù ... Ù Pn(x) ® Q(x)

where
– ≥ 0 Pis and 0 or 1 Q
– Pis and Q are positive (i.e., non-negated) literals

•Prolog and most rule-based systems are
limited to Horn clauses

•Horn clauses are a subset of all FOL sentences

https://en.wikipedia.org/wiki/Horn_clause

Horn clauses 2
•Special cases

– Typical rule: P1 Ù P2 Ù … Pn® Q
– Constraint: P1 Ù P2 Ù … Pn® false
– A fact: ® Q
– A goal: Q ®

•Examples
– parent(P1,P2) Ù parent(P2,P3) ® grandparent(P1,P3)
– male(X) Ù female(X) ® false
– ® male(john)
– female(mary) ®

Horn clauses 3

•These are not Horn clauses:
– married(x, y) ® loves(x, y) Ú hates(x, y)
– ¬ likes(john, mary)
– ¬ likes(x, y) ® hates(x, y)

•Can’t assert/conclude disjunctions (i.e., an
”or”)

•Can’t have “true” negation
– Though some systems, like Prolog, allow a negation

operator that means “can’t prove”

•No wonder Horn clause reasoning is easier

Horn clauses 3
•Where are the quantifiers?
– Variables in conclusion universally quantified
– Variables only appearing in premises existentially quantified

•Examples:
– parentOf(P,C) ® childOf(C,P)
"P "C parentOf(P,C) ® childOf(C,P)

– parentOf(P,X) ® isParent(P)
"P $X parent(P,X) ® isParent(P)

– parent(P1, X) Ù parent(X, P2) ® grandParent(P1, P2)
"P1,P2 $X parent(P1,X) Ù parent(X, P2)

® grandParent(P1, P2)

Definite Clauses

•A definite clause is a horn clause with a
conclusion

•What’s not allowed is a horn clause w/o a
conclusion, e.g.
– male(x), female(x) ®
– i.e., ~male(x) Ú ~female(x)

•Most rule-based reasoning systems, like
Prolog, allow only definite clauses in the KB

Limitations

•Most rule-based reasoning systems use only
definite horn clauses
– Limited ability to reason about negation and disjunction

• Benefit is decidability and efficiency
• Some limitations can be overcome by

– Adding procedural components
– Augmenting with other reasoners

Forward & Backward Reasoning

•We often talk about two reasoning
strategies:
– Forward chaining and
– Backward chaining

•Both are equally powerful, but optimized
for different use cases

•You can also have a mixed strategy

Forward chaining

•Proofs start with given axioms/premises in KB,
deriving new sentences using GMP until the
goal/query sentence is derived
– Process follows a chain of rules and facts going from

the KB to the conclusion

•This defines a forward-chaining inference
procedure because it moves “forward” from
the KB to the goal [eventually]

•Inference using GMP is sound and complete for
KBs containing only Horn clauses

http://en.wikipedia.org/wiki/Forward_chaining

Forward chaining example

• KB:
– allergies(X) ® sneeze(X)
– cat(Y) Ù allergicToCats(X) ® allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)

Backward chaining
• Backward-chaining deduction using GMP is also

complete for KBs containing only Horn clauses
• Proofs start with the goal query, find rules with

that conclusion, and then tries to prove each of
the antecedents in the rule

• Keep going until you reach premises
• Avoid loops by checking if new subgoal is already

on the goal stack
• Avoid repeated work: use a cache to check if new

subgoal already proved true or failed

http://en.wikipedia.org/wiki/Backward_chaining

Backward chaining example

• KB:
– allergies(X) ® sneeze(X)
– cat(Y) Ù allergicToCats(X) ® allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)

Forward vs. backward chaining
•Forward chaining is data-driven

– Automatic, unconscious processing, e.g., object
recognition, routine decisions

– May do lots of work that is irrelevant to the goal
– Efficient when you want to compute all conclusions

•Backward chaining is goal-driven, better for
problem-solving and query answering
– Where are my keys? How do I get to my next class?
– Complexity can be much less than linear wrt KB size
– Efficient when you want one or a few conclusions
– Good where the underlying facts are changing

Mixed strategy
• Many practical reasoning systems do both forward

and backward chaining
• How you encode rule determines how it’s used:

spouse(X,Y) => spouse(Y,X) % forward chaining
father(X,Y) <= parent(X,Y), male(X) % backward chaining

• Forward chaining rules useful if you want to draw
conclusions and materialize them as facts
– This also easily avoid loops, e.g., don’t trigger forward

chaining if the fact already exists

• Given a model of your rules and the kind of
reasoning needed, you can decide which to encode
as FC and which as BC rules

Completeness of GMP

• GMP (using forward or backward chaining) is
complete for KBs that contain only Horn clauses

• not complete for simple KBs with non-Horn clauses

• What is entailed by the following sentences:

1. ("x) P(x) ® Q(x)
2. ("x) ¬P(x) ® R(x)
3. ("x) Q(x) ® S(x)
4. ("x) R(x) ® S(x)

Completeness of GMP

• The following entail that S(A) is true:
1. ("x) P(x) ® Q(x)
2. ("x) ¬P(x) ® R(x)
3. ("x) Q(x) ® S(x)
4. ("x) R(x) ® S(x)

• If we want to conclude S(A), with GMP we cannot,
since the second one is not a Horn clause

• It is equivalent to P(x) Ú R(x)

Fin
21

