

Chapter 9

Automated inference for FOL

- Automated inference for FOL is harder than PL
- Variables can take on an infinite number of possible values from their domains
- Hence there are potentially an infinite number of ways to apply the Universal Elimination rule
- Godel's Completeness Theorem says that FOL entailment is only semi-decidable
- If a sentence is true given a set of axioms, there is a procedure that will eventually determine this
- If a sentence is false, there's no guarantee a procedure will ever discover this - it may never halt

Generalized Modus Ponens (GMP)

- Modus Ponens: P, P=>Q |= Q
- Generalized Modus Ponens extends this to rules in FOL
- Combines And-Introduction, UniversalElimination, and Modus Ponens, e.g.
- given $\mathrm{P}(\mathrm{c}), \mathrm{Q}(\mathrm{c}), \forall \mathrm{xP}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x})$
- derive R(c)
- Must deal with
-more than one condition on rule's left side -variables

Often rules restricted to Horn clauses

- A Horn clause is a sentence of the form:

$$
P_{1}(x) \wedge P_{2}(x) \wedge \ldots \wedge P_{n}(x) \rightarrow Q(x)
$$

where
$-\geq 0 P_{i}$ s and 0 or $1 Q$

- $P_{i} s$ and Q are positive (i.e., non-negated) literals
- Prolog and most rule-based systems are limited to Horn clauses
- Horn clauses are a subset of all FOL sentences

Horn clauses 2

- Special cases
-Typical rule: $P_{1} \wedge P_{2} \wedge \ldots P_{n} \rightarrow Q$
-Constraint: $P_{1} \wedge P_{2} \wedge \ldots P_{n} \rightarrow$ false
- A fact: \rightarrow Q
-A goal: Q \rightarrow
- Examples
- parent(P1,P2) ^ parent(P2,P3) \rightarrow grandparent(P1,P3)
- male $(X) \wedge$ female $(X) \rightarrow$ false
$-\rightarrow$ male(john)
- female(mary) \rightarrow

Horn clauses 3

- These are not Horn clauses:
$-\operatorname{married}(x, y) \rightarrow \operatorname{loves}(x, y) \vee$ hates (x, y)
- \neg likes(john, mary)
- \neg likes $(x, y) \rightarrow$ hates (x, y)
- Can't assert/conclude disjunctions (i.e., an "or")
- Can't have "true" negation
- Though some systems, like Prolog, allow a negation operator that means "can't prove"
- No wonder Horn clause reasoning is easier

Horn clauses 3

-Where are the quantifiers?

- Variables in conclusion universally quantified
- Variables only appearing in premises existentially quantified
- Examples:
- parentOf(P, C) \rightarrow childOf($C, P)$ $\forall \mathrm{P} \forall \mathrm{C}$ parentOf($\mathrm{P}, \mathrm{C}) \rightarrow$ childOf($\mathrm{C}, \mathrm{P})$
- parentOf(P,X) \rightarrow isParent (P) $\forall P \exists X$ parent $(P, X) \rightarrow$ isParent (P)
$-\operatorname{parent}(P 1, X) \wedge \operatorname{parent}(X, P 2) \rightarrow \operatorname{grandParent(P1,P2)}$ $\forall \mathrm{P} 1, \mathrm{P} 2 \exists \mathrm{X}$ parent $(\mathrm{P} 1, \mathrm{X}) \wedge$ parent $(\mathrm{X}, \mathrm{P} 2)$
\rightarrow grandParent(P1, P2)

Definite Clauses

- A definite clause is a horn clause with a conclusion
-What's not allowed is a horn clause w/o a conclusion, e.g.
- male(x), female(x) \rightarrow
-i.e., $\sim \operatorname{male}(x) \vee \sim$ female (x)
- Most rule-based reasoning systems, like Prolog, allow only definite clauses in the KB

Limitations

- Most rule-based reasoning systems use only definite horn clauses
- Limited ability to reason about negation and disjunction
- Benefit is decidability and efficiency
- Some limitations can be overcome by
- Adding procedural components
- Augmenting with other reasoners

Forward \& Backward Reasoning

- We often talk about two reasoning strategies:
-Forward chaining and
-Backward chaining
- Both are equally powerful, but optimized for different use cases
- You can also have a mixed strategy

Forward chaining

- Proofs start with given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
- Process follows a chain of rules and facts going from the KB to the conclusion
- This defines a forward-chaining inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is sound and complete for KBs containing only Horn clauses

Forward chaining example

- KB:
- allergies $(X) \rightarrow$ sneeze (X)
$-\operatorname{cat}(\mathrm{Y}) \wedge$ allergicToCats $(\mathrm{X}) \rightarrow$ allergies (X)
- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Backward chaining

- Backward-chaining deduction using GMP is also complete for KBs containing only Horn clauses
- Proofs start with the goal query, find rules with that conclusion, and then tries to prove each of the antecedents in the rule
- Keep going until you reach premises
- Avoid loops by checking if new subgoal is already on the goal stack
- Avoid repeated work: use a cache to check if new subgoal already proved true or failed

Backward chaining example

- KB:
- allergies $(X) \rightarrow$ sneeze (X)
- cat(Y) \wedge allergicToCats(X) \rightarrow allergies (X)
- cat(felix)
- allergicToCats(mary)
- Goal:
- sneeze(mary)

Forward vs. backward chaining

- Forward chaining is data-driven
-Automatic, unconscious processing, e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
-Efficient when you want to compute all conclusions
- Backward chaining is goal-driven, better for problem-solving and query answering
-Where are my keys? How do I get to my next class?
- Complexity can be much less than linear wrt KB size
-Efficient when you want one or a few conclusions
-Good where the underlying facts are changing

Mixed strategy

- Many practical reasoning systems do both forward and backward chaining
- How you encode rule determines how it's used:
spouse $(X, Y)=>$ spouse $(Y, X) \quad \%$ forward chaining
father $(X, Y)<=\operatorname{parent}(X, Y)$, male (X) \% backward chaining
- Forward chaining rules useful if you want to draw conclusions and materialize them as facts
- This also easily avoid loops, e.g., don't trigger forward chaining if the fact already exists
- Given a model of your rules and the kind of reasoning needed, you can decide which to encode as FC and which as BC rules

Completeness of GMP

- GMP (using forward or backward chaining) is complete for KBs that contain only Horn clauses
- not complete for simple KBs with non-Horn clauses
- What is entailed by the following sentences:

$$
\begin{aligned}
& \text { 1. }(\forall x) P(x) \rightarrow Q(x) \\
& \text { 2. }(\forall x) \neg P(x) \rightarrow R(x) \\
& \text { 3. }(\forall x) Q(x) \rightarrow S(x) \\
& \text { 4. }(\forall x) R(x) \rightarrow S(x)
\end{aligned}
$$

Completeness of GMP

- The following entail that $S(A)$ is true:

$$
\begin{aligned}
& \text { 1. }(\forall x) P(x) \rightarrow Q(x) \\
& \text { 2. }(\forall x) \neg P(x) \rightarrow R(x) \\
& \text { 3. }(\forall x) Q(x) \rightarrow S(x) \\
& \text { 4. }(\forall x) R(x) \rightarrow S(x)
\end{aligned}
$$

- If we want to conclude $S(A)$, with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $P(x) \vee R(x)$

