

Propositional Logic: Pro & Con

9.2.4

Propositional logic: pro and con

PL Advantages

- -Simple KR language good for many problems
- -Lays foundation for higher logics (e.g., FOL)
- -Reasoning is decidable, though NP complete; efficient techniques exist for many problems

PL Disadvantages

- -Not expressive enough for many problems
- -Even when it is, it can very **unconcise**

PL is a weak KR language

- Hard to identify *individuals* (e.g., Mary, 3)
- Can't directly represent properties of individuals or relations between them (e.g., "Bill age 24")
- Generalizations, patterns, regularities hard to represent (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) represents this information via relations, terms, variables & qualifiers, e.g.,
 - John loves Mary: loves(John, Mary)
 - Every elephant is gray: $\forall X$ (elephant(X) \rightarrow gray(X))
 - There is a black swan: ∃ X (swan(X) ^ black(X))

Hunt the Wumpus domain

• Some atomic propositions:

A12 = agent is in cell (1,2)S12 = There's a stench in cell (1,2)B34 = There's a breeze in cell (3,4)W22 = Wumpus is in cell (2,2) V11 = We've visited cell (1,1)OK11 = cell (1,1) is safe

= Aaent 2.4 3.4 4,4 ^{1,3} w 2.3 3.3 4.3 1,2 A 2.2 3.2 4.2 ок OK 1.1 2,1 3,1 4.1 в P! v v OK OK

= Breeze = Glitter, Gold OK = Safe square

= Pit

= Stench

= Visited

= Wumpus

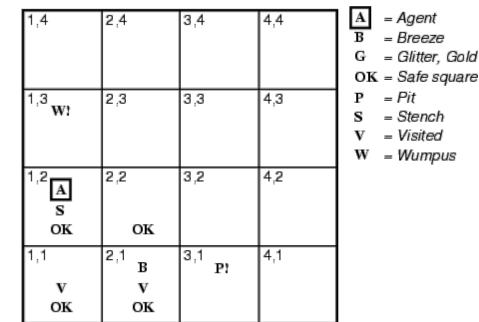
• Some rules:

 \neg S22 $\rightarrow \neg$ W12 $\land \neg$ W23 $\land \neg$ W32 $\land \neg$ W21 $S22 \rightarrow W12 \lor W23 \lor W32 \lor W21$ $B22 \rightarrow P12 \lor P23 \lor P32 \lor P21$ $W22 \rightarrow S12 \land S23 \land S32 \land W21$ $W22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$ $A22 \rightarrow V22$ $A22 \rightarrow W11 \land W21 \land W44$ $V22 \rightarrow OK22$

If there's no stench in cell 2,2 then the Wumpus isn't in cell 21, 23 32 or 21

Hunt the Wumpus domain

- Eight symbols for each cell, i.e.: A11, B11, G11, OK11, P11, S11, V11, W11
- Lack of variables requires giving similar rules for each cell!
- Ten rules (I think) for each


 $A11 \rightarrow \dots$ $W11 \rightarrow \dots$ \neg W11 \rightarrow ... $V11 \rightarrow \dots$ $S11 \rightarrow \dots$ $P11 \rightarrow \dots$ \neg S11 \rightarrow ... $\neg P11 \rightarrow \dots$ $B11 \rightarrow \dots$ $\neg B11 \rightarrow ...$

1,4	2,4	3,4	4,4	A = Agent B = Breeze
				G = Glitter, Gold
				OK = Safe square
1,3	2,3	3,3	4,3	$\mathbf{P} = Pit$
' W!	-			S = Stench
				V = Visited
				W = Wumpus
^{1,2} A s	2,2	3,2	4,2	
oĸ	ок			
1,1	2,1 B	3,1 P!	4,1	
v	v			
ок	ок			

- 8 symbols for 16 cells => 128 symbols
- 2^{128} possible models \otimes
- Must do better than brute force

After third move

- We can prove that the Wumpus is in (1,3) using these four rules
- See R&N section 7.5 $(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$ $(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$
 - $(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$
 - (R4) S12 \rightarrow W13 \vee W12 \vee W22 \vee W11

Proving W13: Wumpus is in cell 1,3

Apply **MP** with –S11 and R1: \neg W11 \land \neg W12 \land \neg W21 Apply **AE**, yielding three sentences: ¬ W11, ¬ W12, ¬ W21 Apply **MP** to ~S21 and R2, then apply **AE**: ¬ W22, ¬ W21, ¬ W31 Apply **MP** to S12 and R4 to obtain: $W13 \lor W12 \lor W22 \lor W11$ Apply **UR** on (W13 \vee W12 \vee W22 \vee W11) and \neg W11: $W13 \vee W12 \vee W22$ Apply **UR** with (W13 \vee W12 \vee W22) and \neg W22: W13 \vee W12 Apply **UR** with (W13 \vee W12) and \neg W12: W13 QED

(R1) \neg S11 $\rightarrow \neg$ W11 $\land \neg$ W12 $\land \neg$ W21 (R2) \neg S21 $\rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W22 $\land \neg$ W31 (R3) \neg S12 $\rightarrow \neg$ W11 $\land \neg$ W12 $\land \neg$ W22 $\land \neg$ W13 (R4) S12 \rightarrow W13 \lor W12 \lor W22 \lor W11

> **Rule Abbreviation** MP: modes ponens AE: and elimination R: unit resolution

Propositional Wumpus problems

#1 Lack of variables prevents general rules

 Encoding that any cell we've visited is safe just requires one FOL sentence:

 $\forall x, y V(x,y) \rightarrow OK(x,y)$

 Encoding that a stench implies the Wumpus is nearby is also simple

 $\forall x, y S(x,y) \rightarrow W(x-1,y) \lor W(x+1,y) \lor ...$

• Though adjusting for the world edges complicates it, but that's easy to fix

Propositional Wumpus problems

#2 Change of KB over time hard to represent

- In classic logic; a fact is true or false for all time
- A standard FOL technique is to index **dynamic facts** with the time when they're true
 - -A(1, 1, 0) # agent was in cell 1,1 at time 0
 - -A(2, 1, 1) # agent was in cell 2,1 at time 1
- For propositional logic, we need a separate KB for every time point

Propositional logic summary

- Inference: deriving new sentences from old
 - Sound inference derives true conclusions given true premises
 - Complete inference derives all true conclusions from premises
- Different logics make different **commitments** about what world is made of and kinds of beliefs we can have
- **Propositional logic** commits only to existence of facts that may or may not be the case
 - Simple syntax & semantics illustrates inference process
 - Sound, complete and fast proof procedures
 - It can be impractical or cumbersome for many worlds

