

Chapters 7, 8.1–8.3, 9

Logic roadmap overview

- Basic concepts, Hunt the Wumpus use case
- Propositional logic
 - Problems with propositional logic
- First-order logic
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, wffs, axioms, theories, proofs, ...
 - Variations and extensions to first-order logic

Logical agents

- Reflex agents
- Representing change: situation calculus, frame problem
- Preferences on actions
- Goal-based agents

For starters...

- What is knowledge?
- How can we represent knowledge?
- How can we use it to help understand the world, what people say, what we see?
- Possible example:
 - All elephants are grey
 - -Clyde is an elephant
 - What color is Dumbo?
- Logic as knowledge motivated by this example
- But there's much more to knowledge

Disclaimer

"Logic, like whiskey, loses its beneficial effect when taken in too large quantities."

- <u>Lord Dunsany</u>

Big Ideas

- Logic: great knowledge representation (KR) language for many AI problems
- Propositional logic: simple foundation and fine for many AI problems
- First order logic (FOL): more expressive as a KR language; needed for many AI problems
- Variations on classical FOL are common: horn logic, higher-order logic, modal logic, threevalued logic, probabilistic logic, fuzzy logic, etc.

Al Use Cases for Logic

Logic has many use cases even in a time dominated by deep learning, including these examples:

- Modeling and using knowledge in the <u>Hunt the</u>
 <u>Wumpus</u> game
- Supporting <u>AI planning systems</u> that allow agents to efficiently achieve their goals
- Defining and using semantic <u>knowledge graphs</u>
 such as <u>schema.org</u> and <u>Wikidata</u>
- Supporting <u>common sense</u> and <u>causal</u> reasoning
- Adding features to neural network systems

#