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Chapter 5

Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison



Why study games?
• Interesting, hard problems requiring minimal 
“initial structure”

• Clear criteria for success
• Study problems involving {hostile, adversarial, 

competing, cooperating} agents and uncertainty of 
interacting with the natural world

• People have used them to assess their intelligence
• Fun, good, easy to understand, PR potential
• Games often define very large search spaces, e.g.

chess 35100 nodes in search tree, 1040 legal states



50 years of Computer chess history
• 1948: Norbert Wiener describes how chess program can work 

using minimax search with an evaluation function
• 1950: Claude Shannon publishes Programming a

Computer for Playing Chess
• 1951: Alan Turing develops on paper 1st program capable of 

playing full chess games (Turochamp)
• 1958: first program plays full game on IBM 704 (loses)
• 1962: Kotok & McCarthy (MIT) 1st program to play credibly
• 1967: Greenblatt’s Mac Hack Six (MIT) defeats a person in 

regular chess tournament play
• 1997: IBM’s Deep Blue beats world champ Gary Kasparov

https://en.wikipedia.org/wiki/Cybernetics:_Or_Control_and_Communication_in_the_Animal_and_the_Machine
http://www.csee.umbc.edu/courses/graduate/671/fall12/resources/ProgrammingaComputerforPlayingChess.pdf
http://www.csee.umbc.edu/courses/graduate/671/fall12/resources/ProgrammingaComputerforPlayingChess.pdf
https://en.wikipedia.org/wiki/Turochamp
https://www.youtube.com/watch?v=iT_Un3xo1qE
https://en.wikipedia.org/wiki/Kotok-McCarthy
http://en.wikipedia.org/wiki/Mac_Hack
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)


State of the art
• 1979 Backgammon: BKG (CMU) tops world champ
• 1994 Checkers: Chinook is the world champion
• 1997 Chess: IBM Deep Blue beat Gary Kasparov
• 2007 Checkers: solved (it’s a draw)
• 2016 Go: AlphaGo beat champion Lee Sedol
• 2017 Poker: CMU’s Libratus won $1.5M from top 

poker players in a casino challenge

• 20?? Bridge: Expert bridge programs exist, but no 
world champions yet

http://www.bkgm.com/articles/Berliner/BackgammonProgramBeatsWorldChamp/
https://en.wikipedia.org/wiki/Chinook_(draughts_player)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
http://www.cs.nyu.edu/courses/spring13/CSCI-UA.0472-001/Checkers/checkers.solved.science.pdf
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Libratus
https://en.wikipedia.org/wiki/Computer_bridge


1997



2016



AlphaGo Zero learns on its Own

AlphaGo Zero was not trained on human games, but used 
reinforcement learning while playing against itself

https://www.deepmind.com/blog/alphago-zero-starting-from-scratch
https://en.wikipedia.org/wiki/Reinforcement_learning


AlphaGo - The Movie
Highly recommended 2017 award-winning

documentary, free on YouTube

https://www.alphagomovie.com/
https://www.youtube.com/watch?v=WXuK6gekU1Y


New: Human beats AI by tricking it to Blunder

• Researchers trained their own AI "adversaries" to search 
for weaknesses in KataGo in 2023
– KataGo is considered a state-of-the-art GO playing system

• See arXiv paper “Adversarial Policies Beat Superhuman Go AIs”
"Notably, our adversaries do not win by learning to play Go better 
than KataGo – in fact, our adversaries are easily beaten by human 
amateurs. Instead, our adversaries win by tricking KataGo into 
making serious blunders. … Our results demonstrate that even 
superhuman AI systems may harbor surprising failure modes.”

https://github.com/lightvector/KataGo
https://goattack.far.ai/pdfs/go_attack_paper.pdf?uuid=yQndPnshgU4E501a2368


How can
we do it?



Classical vs. Machine Learning approaches

•We’ll look first at the classical 
approach used from the 1940s to 
2010

•Then at newer statistical approaches, 
of which AlphaGo is an example

•And reinforcement learning, used by 
Facebook’s ReBel for Texas Hold’em

•These all share some techniques

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://ai.facebook.com/blog/rebel-a-general-game-playing-ai-bot-that-excels-at-poker-and-more/
https://en.wikipedia.org/wiki/Texas_hold_%27em


Typical simple case for a game
• 2-person game
• Players alternate moves 
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to 

complete information about state of game. No 
information hidden from either player.

• No chance (e.g., using dice, shuffled cards) involved 
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello, …
• But not: Bridge,  Solitaire, Backgammon, Poker, 

Rock-Paper-Scissors, ...

https://en.wikipedia.org/wiki/Zero-sum_game


Can we use …

• Uninformed search?
• Heuristic search?
• Local search?
• Constraint based search?

None of these model the fact 
that we have an adversary …



How to play a game, v1
• A way to play such a game is to:

– Consider all the legal moves you can make
– Compute new position resulting from each move
– Evaluate each to determine which is best for you
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board” (i.e., game state)
– Generating all legal next boards
– Evaluating each resulting position



Evaluation function
• Evaluation function or static* evaluator used to 

evaluate the “goodness” of a game position
Contrast with heuristic search, where evaluation function  
estimates cost from start to goal passing through given node

• Zero-sum assumption permits single function to describe 
goodness of board for both players

• “me” = player doing the evaluation
– f(p)  >> 0: position p good for me; bad for you
– f(p) << 0:  position p bad for me; good for you
– f(p) near 0: position p is a neutral position
– f(p) = +infinity: win for  me
– f(p) = -infinity: win for you  *static: snapshot in time

https://en.wikipedia.org/wiki/Zero-sum_game


Evaluation function examples

• For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths] 
Where an open 3length is complete row, column or 
diagonal with no opponent marks 

• Alan Turing’s function for chess
– f(n) = w(n)/b(n) where w(n) = sum of point value 

of white’s pieces and b(n) = sum of black’s
– Traditional chess piece values: pawn:1; knight:3; 

bishop:3; rook:5; queen:9

https://en.wikipedia.org/wiki/Chess_piece_relative_value


Evaluation function examples
• Most evaluation functions specified as a 

weighted sum of features
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n) 

• Typical chess features: piece count, piece 
values, piece placement, squares controlled, … 

• IBM’s chess program Deep Blue (circa 1996) 
had >8K features in its evaluation function!

• We can learn weights from choices made by 
expert players in real games (lots of data for 
chess and other popular games!)

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)


But that’s not how people play (1)
• People also use look ahead, i.e.

enumerate actions, consider opponent’s 
possible responses, REPEAT

• Producing a complete game tree only 
possible for simple games

• A complete tree has all possible moves for 
each position with each leaf being a draw or 
a win for one player
– We need a graph if there can be loops (as in 

chess)

https://en.wikipedia.org/wiki/Combinatorial_search
http://en.wikipedia.org/wiki/Game_tree


• We can easily generate a 
complete game tree for 
Tic-Tac-Toe
• Taking board symmetries 

into account, there are 
138 terminal positions
• 91 wins for X, 44 for O 

and 3 draws



But that’s not how people play (2)
• For non-simple games we generate a 

partial game tree for some number of plies
• For games, we say…

–Move = each player takes a turn
– Ply = one player’s turn

• How far we can “look ahead” depends 
mostly on the branching factor
– How many  moves a player might have
– Checkers ≈ 6.4;  Chess ≈ 35

• What do we do with the partial game tree?

https://en.wikipedia.org/wiki/Ply_(game_theory)


Game trees

• Problem spaces for typical games are trees
• Root node is current board configuration; player 

must decide best single move to make next
• Static evaluator function rates board position 

f(board):real,  often >0 for me; <0 for opponent
• Arcs represent possible legal moves for a player 
• If my turn to move, then root is labeled a "MAX" 

node; otherwise, it’s a "MIN" node 
• Each tree level’s nodes are all MAX or all MIN; 

nodes at level i are of opposite kind from those at 
level i+1 

https://en.wikipedia.org/wiki/Evaluation_function


Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to 
reduce the branching factor

MIN nodes

MAX nodes



Minimax procedure

• Create MAX node with current board configuration 
• Expand nodes to some depth (e.g., five plies) of 

lookahead in game
• Apply evaluation function at each leaf node 
• Back up values for each non-leaf node until value 

is computed for the root node
– At MIN nodes: value is minimum of childrens’ values
– At MAX nodes: value is maximum of childrens’ values

• Choose move to child node whose backed-up 
value determined value at root 

https://en.wikipedia.org/wiki/Minimax


Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2This is the move
selected by minimaxStatic evaluator value

MAX

MIN

MAX



Minimax theorem
• Intuition: assume your opponent is at least as smart as 

you and play accordingly
– If she is not, you can only do better!

• Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320
For every 2-person, 0-sum game with finite strategies, there is a 
value V and a mixed strategy for each player, such that (a) given 
player 2's strategy, best payoff possible for player 1 is V, and (b) 
given player 1's strategy, best payoff possible for player 2 is –V.

• You can think of this as:
–Minimizing your maximum possible loss
–Maximizing your minimum possible gain

https://en.wikipedia.org/wiki/John_von_Neumann


Partial Game Tree for Tic-Tac-Toe

f(n)=+1 if position win for X

f(n)=-1 if position win for O

f(n)=0 if position a draw

Partial game tree for tic-tac-toe. Top node is the initial state, and max moves first, placing an X in an 
empty square. Only part of the tree shown, giving alternating moves by min (O) and max (X), until we 
reach terminal states, which are assigned utilities {-1,0,+1} for {loose, draw, win}



Why backed-up values?
§Why not just use a good static evaluator metric on 

immediate children
§ Intuition: if metric is good, doing look ahead and 

backing up values with Minimax should be better
§Non-leaf node N’s backed-up value is value of best 

state MAX can reach at depth h if MIN plays well
§ “plays well”: same criterion as MAX applies to itself

§ If e is good, then backed-up value is better estimate 
of STATE(N) goodness than e(STATE(N)) 

§Use lookahead horizon h because time to choose a 
move is typically limited



Minimax Tree Again
MAX node

MIN node

f values:

value computed 
by minimax

Two-ply game tree. △ nodes are “max nodes,” in which it is max’s turn to move, and ▽ nodes are 
“min nodes.” The terminal nodes show utility values for max; the other nodes are labeled with their 
minimax values. max’s best move at root is a1 because it leads to state with the highest minimax 
value. min’s best reply is b1 since it leads to the state with the lowest minimax value.



Is that all
there is to simple 

games?



Alpha-beta pruning
• Improve performance of the minimax algorithm 

through alpha-beta pruning
• A simple approach is to compute tree to some

depth, e.g., two plies

? ? ? ?

MAX

MAX

MIN ?

?

?

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Improve performance of the minimax algorithm 

through alpha-beta pruning
• A simple approach is to compute tree to some 

depth, e.g., two plies

2 7 ? ?

• We then compute the values of 
each leaf node, from left to 
right using the static evaluator 
function

• We can compute the values of 
an interior node whenever we 
know all of its children’s nodes

MAX

MAX

MIN ?

?

2

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Improve performance of the minimax algorithm 

through alpha-beta pruning
• A simple approach is to compute tree to some 

depth, e.g., two plies

2 7 1 ?

• But sometimes, we can put a 
bound on an unknown value

• Computing the bound from
what we do know

MAX

MAX

MIN ?

?

2

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Improve performance of the minimax algorithm 

through alpha-beta pruning
• A simple approach is to compute tree to some 

depth, e.g., two plies

2 7 1 ?

• But sometimes, we can put a 
bound on an unknown value

• Computing the bounds from 
the values and other bounds 
we do know

MAX

MAX

MIN

≥ 2

2 ≤ 1

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Improve performance of the minimax 

algorithm through alpha-beta pruning
• “If you have an idea that is surely bad, don't take 

the time to see how truly awful it is” -Pat Winston (MIT) 

2 7 1 ?Z

• Need not compute the value of ?Z
• Know value of ?Y will be smaller 

of 1 and ?Z, i.e., ?Y ≤ 1 & ?Y≤?Z
• No matter what ?Z is, it can’t 

affect value of ?X
• MAX can get a 2 by choosing its 

first move

MAX

MAX

MIN ?Y

?X

2

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Improve performance of the minimax 

algorithm through alpha-beta pruning
• “If you have an idea that is surely bad, don't take 

the time to see how truly awful it is” -Pat Winston (MIT) 

2 7 1 ?Z

• Need not compute the value of ?Z
• Know value of ?Y will be smaller 

of 1 and ?Z, i.e., ?Y ≤ 1 & ?Y≤?Z
• No matter what ?Z is, it can’t 

affect value of ?X
• MAX can get a 2 by choosing its 

first move

MAX

MAX

MIN ?Y

?X

2

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Improve performance of the minimax 

algorithm through alpha-beta pruning
• “If you have an idea that is surely bad, don't take 

the time to see how truly awful it is” -Pat Winston (MIT) 

2 7 1

b:2

a:2 

b:1

?

• The alpha-beta algorithm 
maintains bounds on non-leaf 
nodes, alpha for Max nodes and 
beta for Min nodes

• A Max node’s alpha is a lower 
bound on its final value

• A Min node’s beta is a upper
bound on its final value

MAX

MAX

MIN 2 ?

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning
• Traverse tree in depth-first order 
• At MAX node n, alpha(n) = max 

value so far in immediate subtree 
Alpha values start at -∞ and only increase

• At MIN node n, beta(n) = min value found so far
Beta values start at +∞ and only decrease

• Beta cutoff: stop search below MAX node N (i.e., 
don’t examine more descendants) if alpha(N) >= 
beta(i) for some MIN node ancestor i of N

• Alpha cutoff: stop search below MIN node N if 
beta(N)<=alpha(i) for a MAX node ancestor i of N

2 7 1

b:2

a:2 

b:1

?



Alpha-beta pruning
• Traverse tree in depth-first order 
• At MAX node n, alpha(n) = max 

value found so far
Alpha values start at -∞ and only increase

• At MIN node n, beta(n) = min value found so far
Beta values start at +∞ and only decrease

• Beta cutoff: stop search below MAX node N (i.e., 
don’t examine more descendants) if alpha(N) >= 
beta(i) for some MIN node ancestor i of N

• Alpha cutoff: stop search below MIN node N if 
beta(N)<=alpha(i) for a MAX node ancestor i of N

2 7 1

b:2

a:2 

b:1

?



Alpha-Beta Tic-Tac-Toe Example



Alpha-Beta Tic-Tac-Toe Example

b: 2

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase

F = X’s open lines –
O’s open lines



Alpha-Beta Tic-Tac-Toe Example

1

b: 1

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase



Alpha-Beta Tic-Tac-Toe Example

a: 1

Alpha value of MAX
node is lower bound on
final backed-up value;
it can never decrease

1

b: 1

2



Alpha-Beta Tic-Tac-Toe Example

a: 1

1

b = 1

2 -1

b: -1



Alpha-Beta Tic-Tac-Toe Example

a = 1

1

b = 1

2 -1

b = -1

Discontinue search below a MIN node whose beta 
value ≤ alpha value of one of its MAX ancestors



Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

b=1
prune!



Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

b=1
prune!

If Max moves here, it 
expects  a 3 or better

If Max moves here, it 
expects a 1 or worse

If Max moves 
here, it expects 
a 2 or worse



Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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With alpha-beta we avoided computing a static 
evaluation metric for 14 of the 25 leaf nodes



Alpha-beta 
algorithm

function MAX-VALUE (state, α, β)
;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return 
UTILITY(state)

v := -∞
for each s in SUCCESSORS (state) do

v := MAX (v, MIN-VALUE (s, α, β))
if v >= β then return v
α := MAX (α, v)

end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return 
UTILITY(state)

v := ∞
for each s in SUCCESSORS (state) do

v := MIN (v, MAX-VALUE (s, α, β))
if v <= α then return v
β := MIN (β, v)

end
return v



Effectiveness of alpha-beta
• Alpha-beta guaranteed to compute same value for 

root node as minimax, but with less computation
• Worst case: no pruning, examine bd leaf nodes, 

where nodes have b children and d-ply search is 
done 

• Best case: examine only (2b)d/2 leaf nodes
– You can search twice as deep as minimax! 
– Occurs if each player’s best move is 1st alternative 

• In Deep Blue, alpha-beta pruning reduced effective 
branching factor from ~35 to ~6

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
http://ozark.hendrix.edu/~ferrer/courses/335/f11/lectures/effective-branching.html
http://ozark.hendrix.edu/~ferrer/courses/335/f11/lectures/effective-branching.html


Effective branching factor

• Complexity of search problems often
dominated by the branching factor of the 
graph or tree

• That number is in the exponent of the
problem size

• Ignoring some node successors, helps
• Effective branching factor is number of 

successors generated by a "typical" node for 
a given search problem



Many other improvements

§ Adaptive horizon + iterative deepening
§ Extended search: retain k>1 best paths (not 

just 1) and extend tree at greater depth below 
their leaf nodes to help deal with “horizon 
effect”

§ Singular extension: If move is obviously better 
than others in node at horizon h, expand it

§ Use transposition tables to deal with repeated 
states

https://en.wikipedia.org/wiki/Transposition_table


Simple Games Summary
• Simple 2-player, zero-sum, deterministic, 

perfect information games are popular and let 
us explore adversarial search

• Use a static evaluator and look ahead to 
choose move

• Computing static evaluator uses most 
computing

• Minimax makes best choice for next move
• Alpha-beta gives same answer, but typically 

requires much less work


