

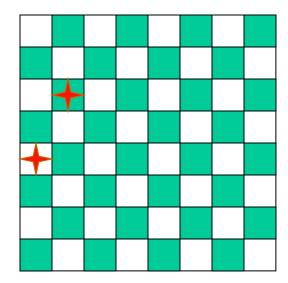
Russell & Norvig Ch. 6

Overview

- Constraint satisfaction is a powerful problemsolving paradigm
 - Problem: set of variables to which we must assign values satisfying problem-specific constraints
 - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
 - Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - Backjumping and dependency-directed backtracking

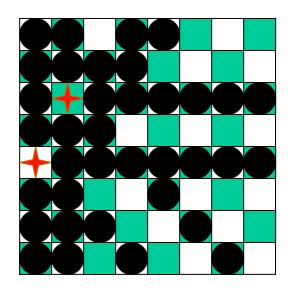
Motivating example: 8 Queens

Place 8 queens on a chess board such that none is attacking another



- **Generate-and-test** with no redundancies must try 88 (16,777,216) combinations!
- Unclear what heuristics might guide an algorithm A like search

Motivating example: 8-Queens



- After placing these two queens, it's trivial to mark the squares we can no longer use
- greatly reducing the solution space!

What more do we need for 8 queens?

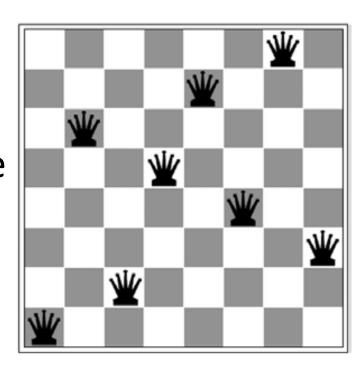
- Not just a successor function and goal test
- But also
 - way to propagate constraints imposed by one queen on placement of others
 - an early failure test
- → Explicit representation of constraints and constraint manipulation algorithms

Informal definition of CSP

- CSP (Constraint Satisfaction Problem), given
 - (1) finite set of variables
 - (2) each with domain of possible values (often finite)
 - (3) set of constraints on values variables can take
- **Solution:** assignment of a value to each variable such that all constraints are satisfied
- **Possible tasks:** (1) does solution exist, (2) find a solution, (3) find all solutions, (4) find *best* solution w.r.t. some metric (objective function)

Example: 8-Queens Problem

- What are the variables?
- What are the variables'
 domains, i.e., sets of possible values
- What are the constraints between (pairs of) variables?



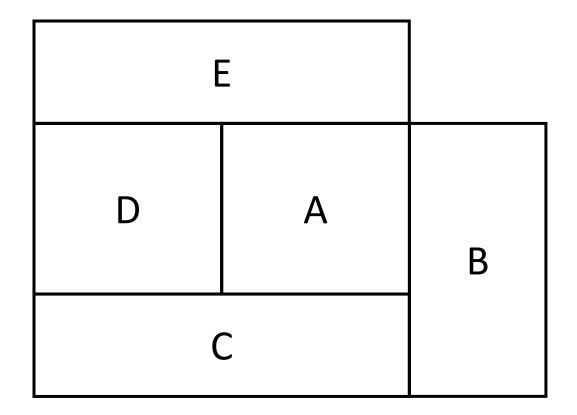
 Assume approach is to put one queen in each column, subject to constraints

Example: 8-Queens Problem

- Variables: Qi, i = 1..8 where Qi is the row number of queen in column I, e.g., Q1=1, Q2=6, Q3=2, Q4=5, Q6=4, Q7=8, Q8=3
- Variables domain: same for each: {1,2,...,8}
- Constraints:
 - -No queens on same row Qi = k → Qj \neq k for j = 1..8, j \neq i
 - -No queens on same diagonal Qi=rowi, Qj=rowj → $|i-j|\neq|$ rowi-rowj| for j=1..8, $j\neq|$
- We will still need to search, but constraints eliminate many possible states

Example 2: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color



Map coloring

• Variables:

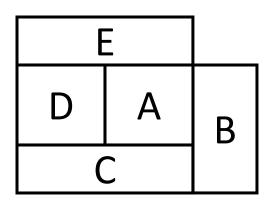
A, B, C, D, E all of domain RGB

Domains:

RGB = {red, green, blue}

• Constraints: $A \neq B$, $A \neq C$, $A \neq E$, $A \neq D$, $B \neq C$, $C \neq D$, $D \neq E$

• A solution: A=red, B=green, C=blue, D=green, E=blue





Brute Force methods

- Finding a solution by a brute force search is easy
 - Just generate potential combinations and test each
 - Generate and test is a <u>weak method</u>
- Potentially very inefficient
 - With n variables where each can have one of 3 values, there are 3ⁿ possible solutions to check
- •There are ~190 countries in the world, which we can color using four colors
- •4¹⁹⁰ is a big number!

Complete <u>Prolog</u> program to solves this

```
solve(A,B,C,D,E) :-
 color(A),
 color(B),
 color(C),
             – generate
 color(D),
 color(E),
 not(A=B),
 not(A=B),
 not(B=C),
 not(A=C),
                test
 not(C=D),
 not(A=E),
 not(C=D)
% possible colors
color(red).
color(green).
color(blue).
```

Example: Boolean SATisfiability

- Given a set of propositions, find assignment of variables to {true, false} making them all true (i.e., satisfying them)
- E.g., the 2 clauses: (A ∨ B ∨ ¬C), (¬A ∨ D) are made true (i.e., satisfied) by assigning
 A = false, B = true, C = false, D = false
- Satisfiability known to be NP-complete
 ⇒ worst case, solving CSP problems requires exponential time
- Many real-world problems reduce to <u>SAT</u>

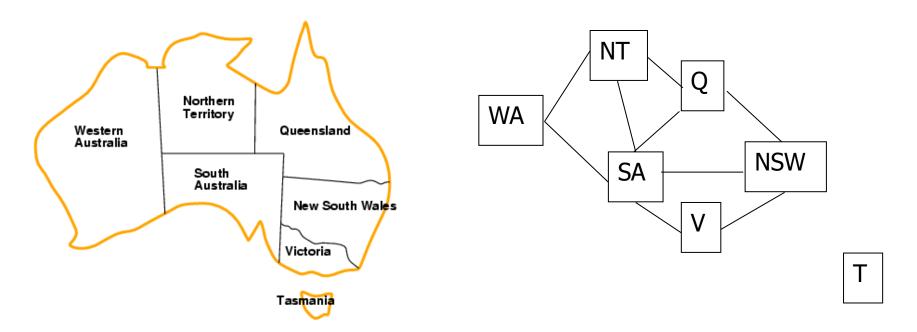
Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Running example: coloring Australia map

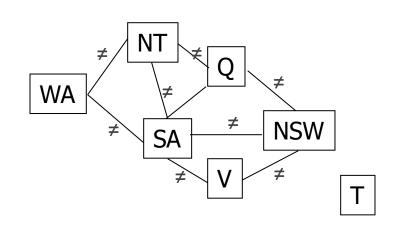


- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables can have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

Unary & binary constraints most common

For coloring Australia's map

- Each mainland region has a binary constraints with each of its neighbors that the two are different colors
- Tasmania has a unary constraint that its color must be R, G, or B



- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints (i.e., involving >2 variables) as ones with just binary constraints

Constraint Network

- Instantiations
 - An instantiation of a subset of variables S is an assignment of a value (in its domain) to each variable in S
 - An instantiation is legal iff it violates no constraints
- A solution is a legal instantiation of all variables in the network

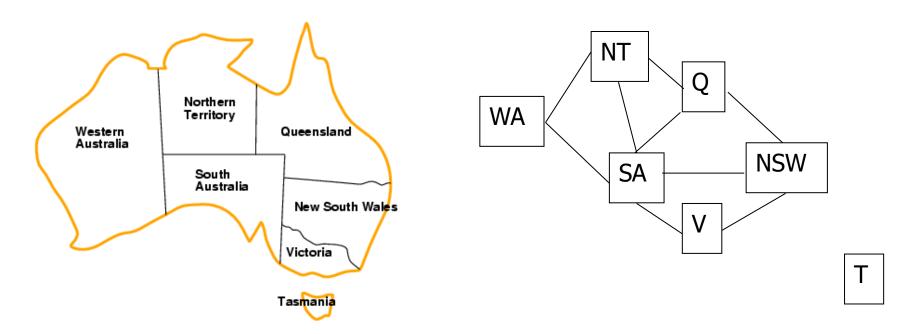
Typical tasks for CSP Constraint Satisfaction Problem

- Possible solution related tasks:
 - –Does a solution exist?
 - -Find one solution
 - Find all solutions
 - -Given a metric on solutions, find best one
 - -Given a partial instantiation, do any of above
- Transform the constraint network into an equivalent one that's easier to solve

Binary CSP

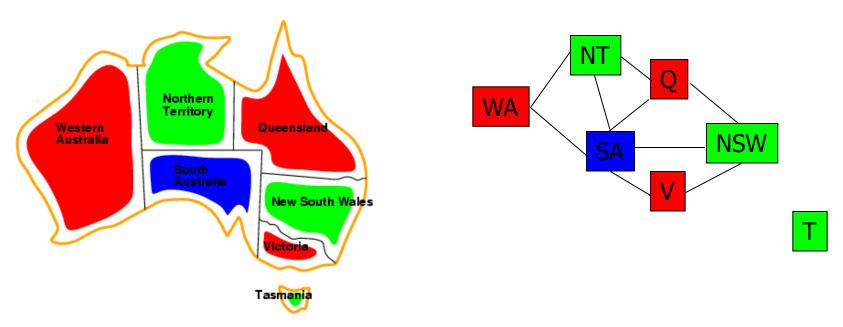
- A binary CSP is one where all constraints involve two variables (or just one variable)
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- Binary CSPs represented as a constraint graph, with a node for each variable and an arc between two nodes iff there's a constraint involving them
 - Unary constraints appear as self-referential arcs

Running example: coloring Australia



- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables can have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

A running example: coloring Australia

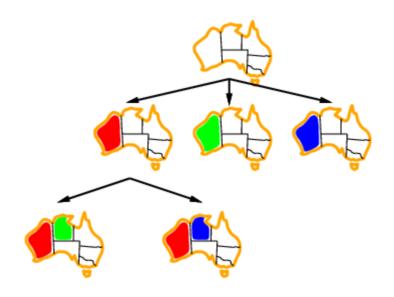


- Solutions: complete & consistent assignments
- Here is one of several solutions
- Constraints can often be expressed as relations,
 e.g., describe WA ≠ NT as a set of possible legal values, one for each variable
 {(red,green), (red,blue), (green,red), (green,blue), (blue,red), (blue,green)}

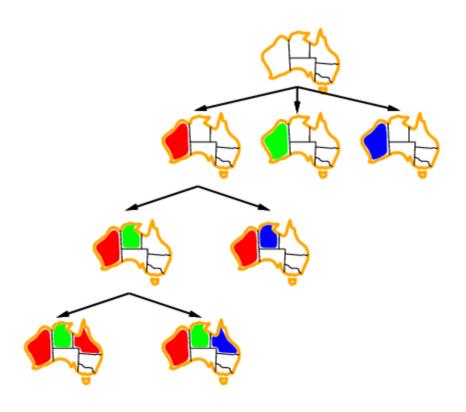
Simple Backtracking example

Backtracking example

Backtracking example



Backtracking example



CSP-backtracking(PartialAssignment A)

- If A is complete then return a
- X ← select an unassigned variable
- D ← select an ordering for the domain of X
- For each value v in D do
 If v consistent with a then
 - Add (X=v) to A
 - result ← CSP-BACKTRACKING(A)
 - If result ≠ failure then return result
 - Remove (X= v) from A
- Return failure

Start with CSP-BACKTRACKING({})

Note: depth first search can solve n-queens problems for n ~ 25

Basic backtracking algorithm

Problems with Backtracking

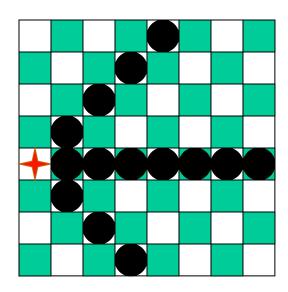
- Thrashing: keep repeating the same failed variable assignments
- Things that can help avoid this:
 - Consistency checking
 - Intelligent backtracking schemes
- Inefficiency: can explore areas of the search space that aren't likely to succeed
 - -Variable ordering can help

Improving backtracking efficiency

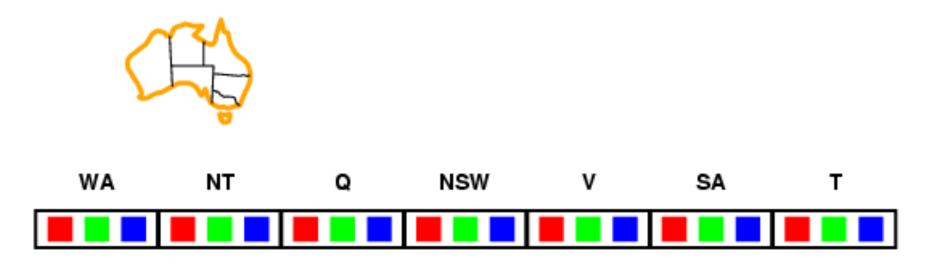
Here are some standard techniques to improve the efficiency of backtracking

- –Can we detect inevitable failure early?
- -Which variable should be assigned next?
- –In what order should its values be tried?

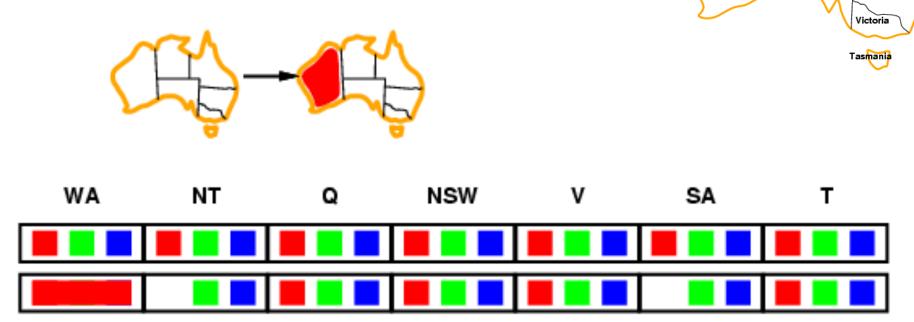
After variable X is assigned to value v, examine each unassigned variable Y connected to X by a constraint and delete values from Y's domain inconsistent with v



Using forward checking and backward checking roughly doubles the size of N-queens problems that can be practically solved



- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



Northern Territory

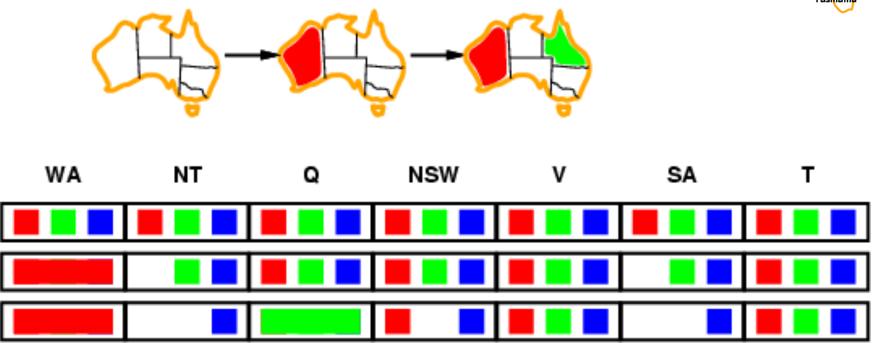
> South Australia

Queensland

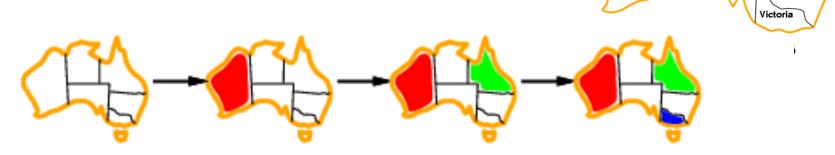
New South Wales

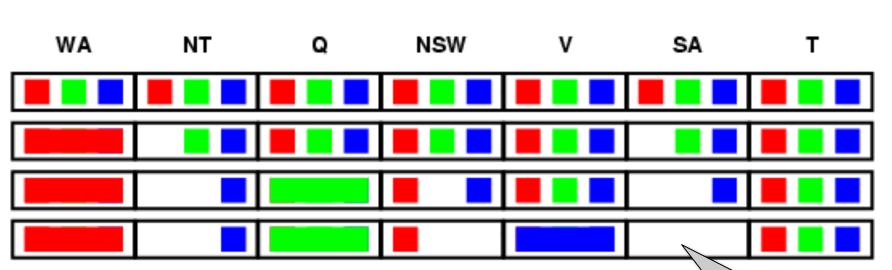
Western Australia

- Assign WA to red
- Propagate constraints by eliminating red from WA's neighbors' domains (NT & SA)



• Assign Q to green and eliminate green from Q's neighbors' domains (NT, SA,, NSW)





- Assign SA to blue and eliminate blue from SA's neighbors' domains
- The empty domain means failure

SA (South Australia) domain is empty!

Northern Territory

> South Australia

Queensland

New South Wales

Western

Australia

Constraint propagation

• Forward checking propagates info.

from assigned to unassigned variables, but
doesn't provide early detection for all failures

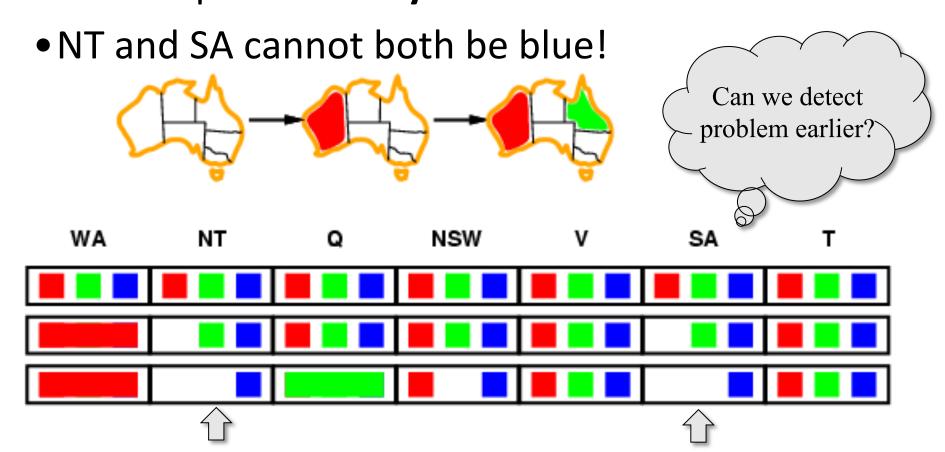
Northern Territory

> South Australia

Queensland

Western

Australia



Definition: Arc consistency

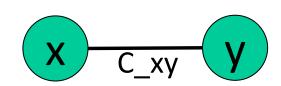
- A constraint C_xy is arc consistent w.r.t. x if for each value v of x there is an allowed value of y
- Similarly define C_xy as arc consistent w.r.t. y
- Binary CSP is arc consistent iff every constraint
 C_xy is arc consistent w.r.t. x as well as y
- When a CSP is not arc consistent, we can make it arc consistent by using the <u>AC3</u> algorithm
 - –Also called "enforcing arc consistency"

Arc Consistency Example 1

• Initial domains

$$-D_x = \{1, 2, 3\}$$

 $-D_y = \{3, 4, 5, 6\}$



Constraint

 Note: for finite domains, we can represent a constraint as a set of legal value pairs

$$-C_xy = \{(1,3), (1,5), (3,3), (3,6)\}$$

- C_xy isn't arc consistent w.r.t. initial domains of x or y
- Enforcing arc consistency, we get reduced domains for x and y:

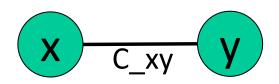
$$-D'_x = \{1, 3\}$$
 % x can't be 2

Arc Consistency Example 2

Initial domains

$$-D_x = \{1, 2, 3\}$$

-D y = \{1, 2, 3\}



• Constraint: X must be less than Y

$$-C_xy = lambda v1, v2: v1 < v2$$

 C_xy not arc consistent w.r.t. x or y; enforcing arc consistency, we get reduced domains:

$$-D'_x = \{1, 2\}$$

$$-D'_y = \{2, 3\}$$

Aside: Python lambda expressions

Previous slide expressed constraint between two variables as an *anonymous* Python function of two arguments

lambda v1, v2: v1 < v2

```
>>> f = lambda v1,v2: v1 < v2

>>> f

<function <lambda> at 0x10fcf21e0>

>>> f(100,200)

True

>>> f(200,100)

False
```

Python uses
lambda after
Alonzo Church's
lambda calculus
from the 1930s

Arc consistency

 Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

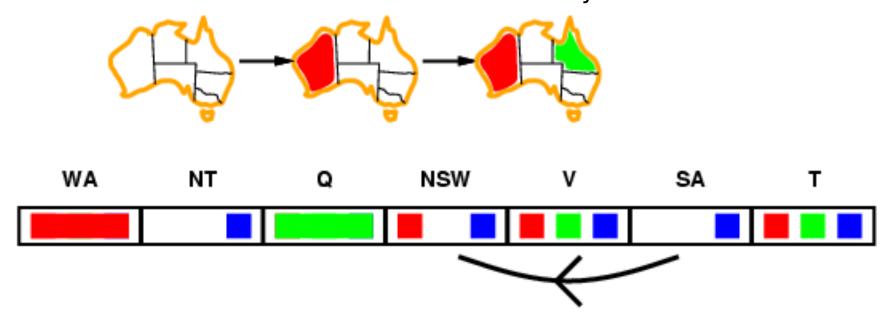
Victoria

New South Wales

Western

Australia

• X \rightarrow Y is consistent iff for every value x_i of X there is some allowed value y_i in Y



Arc consistency

 Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

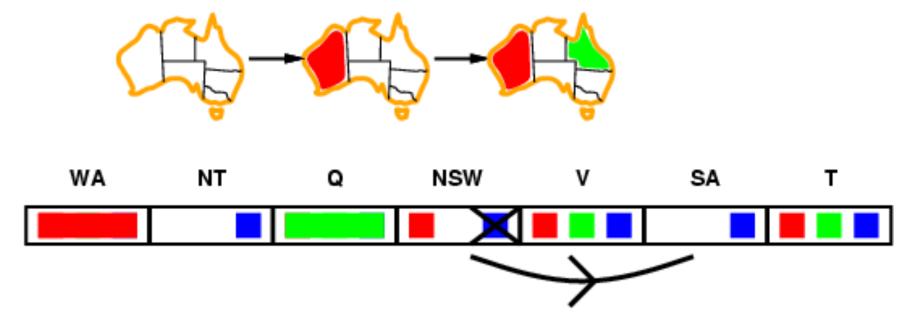
Victoria

New South Wales

Western

Australia

• X \rightarrow Y is consistent iff for every value x_i of X there is some allowed value y_i in Y



Arc consistency

Northern Territory

> South Australia

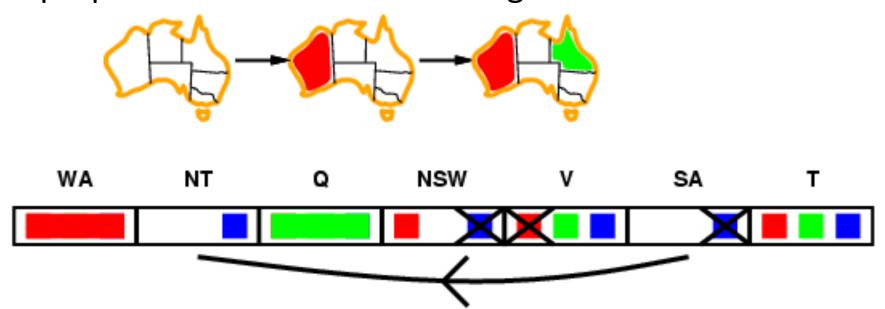
Queensland

Victoria

New South Wales

Western Australia

- Arc consistency detects failure earlier than simple forward checking
- WA=red and Q=green is quickly recognized as a deadend, i.e. an impossible partial instantiation
- The arc consistency algorithm can be run as a preprocessor or after each assignment



General CP for Binary Constraints

```
Algorithm AC3
contradiction ← false
Q 

stack of all variables
while Q is not empty and not contradiction do
  X \leftarrow UNSTACK(Q)
  For every variable Y adjacent to X do
    If REMOVE-ARC-INCONSISTENCIES(X,Y)
       If domain(Y) is non-empty then STACK(Y,Q)
       else return false
```

Complexity of AC3

- e = number of constraints (edges)
- d = number of values per variable
- Each variable inserted in queue up to d times
- REMOVE-ARC-INCONSISTENCY takes O(d²)
 time
- CP takes O(ed³) time

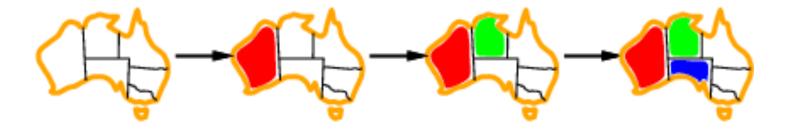
Improving backtracking efficiency

- Some standard techniques to improve the efficiency of backtracking
 - Can we detect inevitable failure early?
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000-queen puzzles
 feasible

H1: pick var with fewest values

AKA most constrained variable:

choose the variable with the fewest legal values



- a.k.a. minimum remaining values (MRV) heuristic
- After assigning value to WA, both NT and SA have only two values in their domains
 - choose one of them rather than Q, NSW, V or T

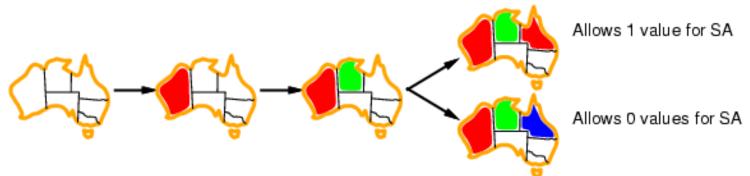
H2: most constraining variable WA

- SA NSW
- Tie-breaker after H1, minimum remaining values
- Choose variable involved in largest # of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW

H3: Least constraining value

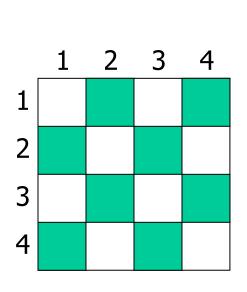
- Given variable, try value that's least constraining on its neighbors:
 - the one that rules out the fewest values in the remaining variables

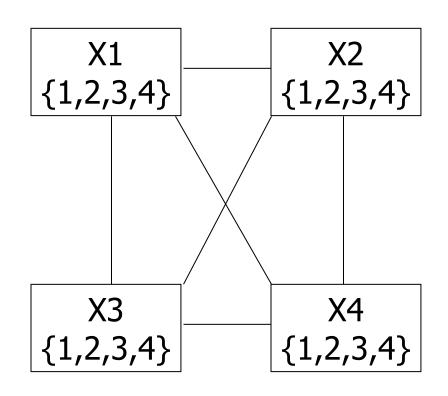


- Combining these heuristics makes 1000 queens feasible
- What's an intuitive explanation for this?

Is AC3 Alone Sufficient?

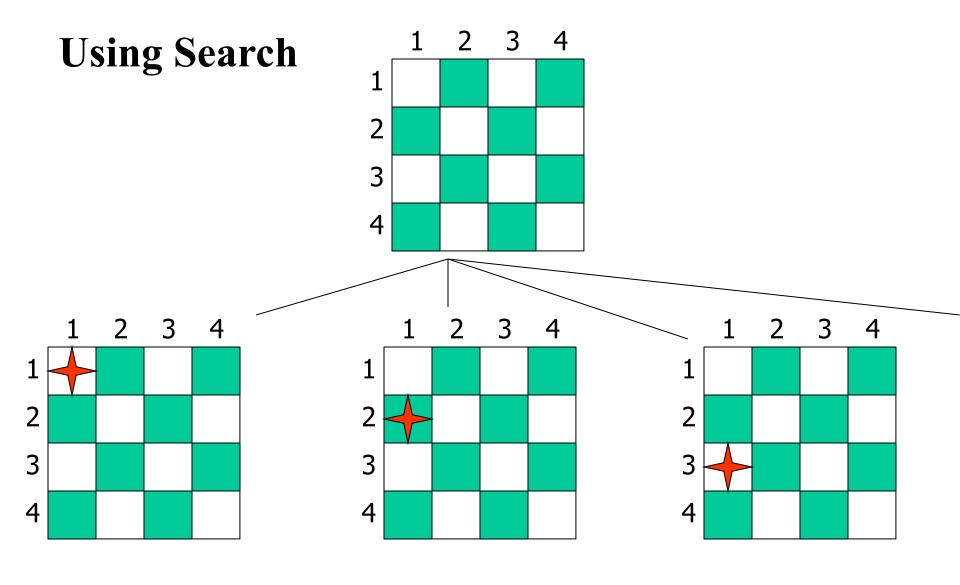
Consider the four queens problem





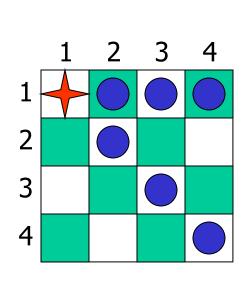
Solving a CSP still requires search

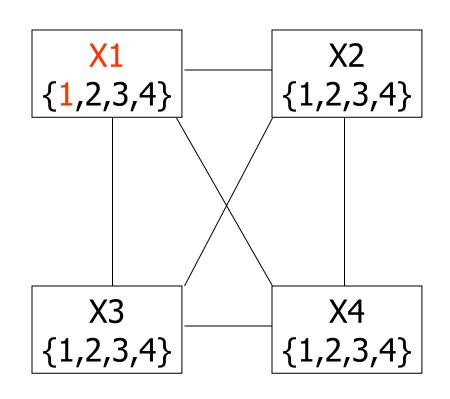
- Search:
 - -can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
 - -can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation & search:
 - –perform constraint propagation at each search step



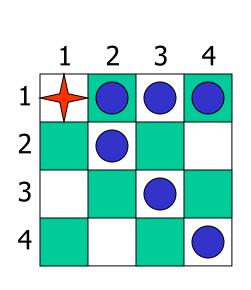
Using CSP

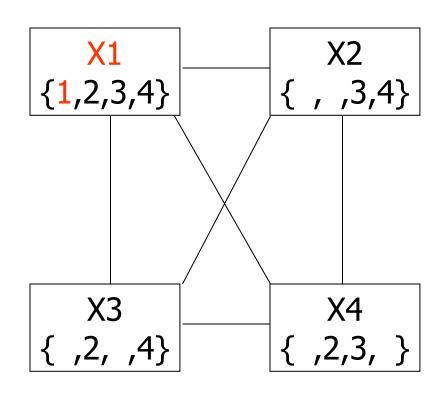
4-Queens Problem



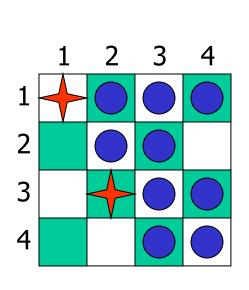


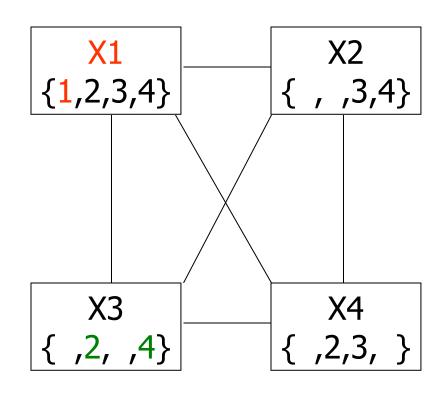
Try assigning X1=1



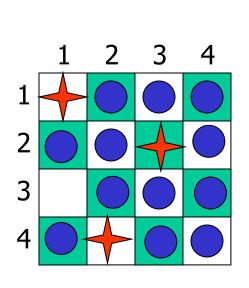


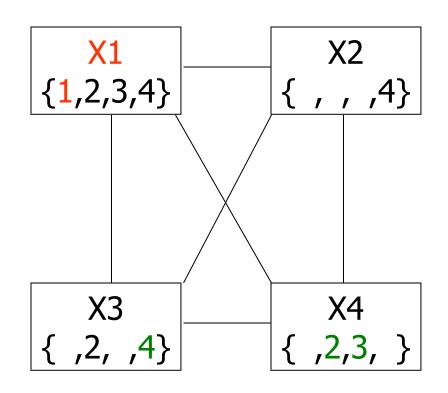
X1=1 eliminates { X2=1,2, X3=1,3, X4=1,4 }



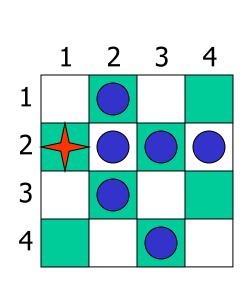


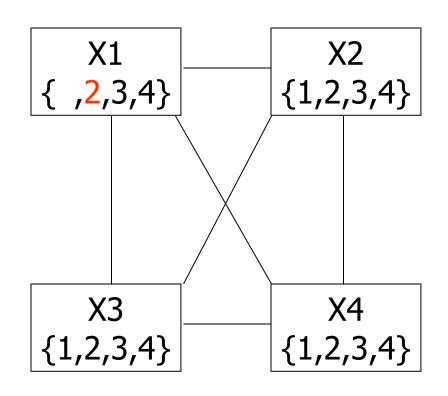
X2=3 eliminates { X3=2, X3=3, X3=4 } ⇒ inconsistent!



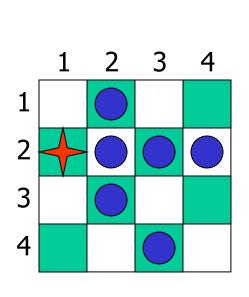


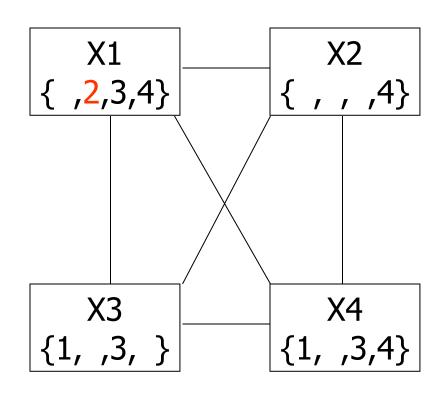
X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3} ⇒ inconsistent!



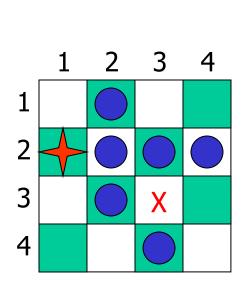


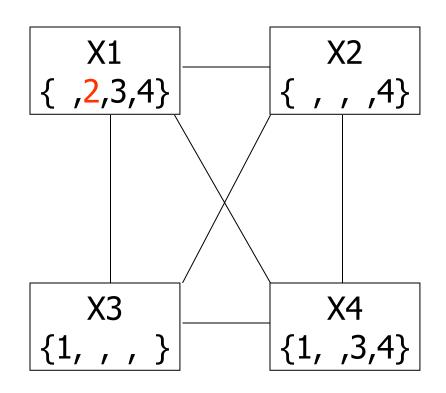
X1 can't be 1, let's try 2



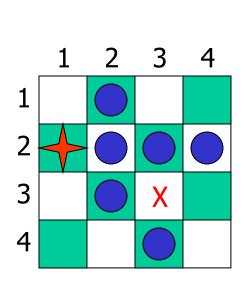


Can we eliminate any other values?



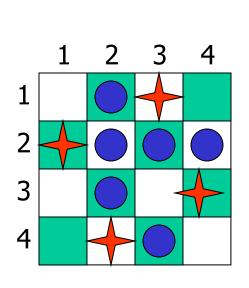


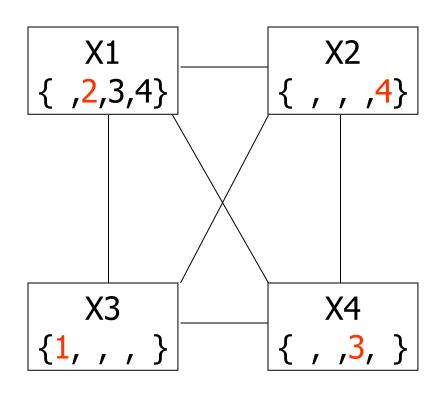
Yes! We know X2=4, so X3 can't be 3





Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values





There is only one solution with X1=2

Sudoku

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3 × 3 sub-grids must contain all nine digits

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Ε	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
1			5		1		3		

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6		3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4		1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
ı	6	9	5	4	1	7	3	8	2

 Some initial configurations are easy to solve and others very difficult

Sudoku Example

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
-			5		1		3		

initial problem

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Ε	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7		9
ı	6	9	5	4	1	7	3	8	2

a solution

How can we set this up as a CSP?

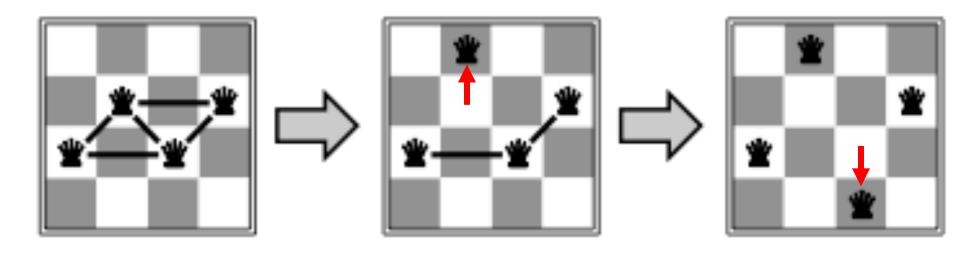
```
def sudoku(initValue):
                                                                                                 # Sample problems
  p = Problem()
                                                                                                 easy = [
                                                                                                  [0,9,0,7,0,0,8,6,0],
  for i in range(1, 10): # Variable for each cell: 11,12,13...21,22,...98,99
                                                                                                  [0,3,1,0,0,5,0,2,0],
    p.addVariables(range(i*10+1, i*10+10), range(1, 10))
                                                                                                  [8,0,6,0,0,0,0,0,0],
  for i in range(1, 10): # Each row has different values
                                                                                                  [0,0,7,0,5,0,0,0,6],
                                                                                                  [0,0,0,3,0,7,0,0,0]
    p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
                                                                                                  [5,0,0,0,1,0,7,0,0],
  for i in range(1, 10): # Each column has different values
                                                                                                  [0,0,0,0,0,0,1,0,9],
                                                                                                  [0,2,0,6,0,0,0,5,0],
    p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
                                                                                                  [0,5,4,0,0,8,0,7,0]]
  # Each 3x3 box has different values
                                                                                                 hard = [
  p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
                                                                                                  [0,0,3,0,0,0,4,0,0],
  p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
                                                                                                  [0,0,0,0,7,0,0,0,0]
                                                                                                  [5,0,0,4,0,6,0,0,2],
  p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
                                                                                                  [0,0,4,0,0,0,8,0,0],
                                                                                                  [0,9,0,0,3,0,0,2,0],
  p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
                                                                                                  [0,0,7,0,0,0,5,0,0],
  p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
                                                                                                  [6,0,0,5,0,2,0,0,1],
                                                                                                  [0,0,0,0,9,0,0,0,0]
  p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
                                                                                                  [0,0,9,0,0,0,3,0,0]]
  p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
                                                                                                 very hard = [
  p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
                                                                                                  [0,0,0,0,0,0,0,0,0]
                                                                                                  [0,0,9,0,6,0,3,0,0],
  p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
                                                                                                  [0,7,0,3,0,4,0,9,0],
  for i in range(1, 10): # unary constraints for cells with initial non-zero values
                                                                                                  [0,0,7,2,0,8,6,0,0],
                                                                                                  [0,4,0,0,0,0,0,7,0],
    for j in range(1, 10):
                                                                                                  [0,0,2,1,0,6,5,0,0],
       value = initValue[i-1][i-1]
                                                                                                  [0,1,0,9,0,5,0,4,0],
       if value: p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
                                                                                                  [0,0,8,0,2,0,7,0,0],
                                                                                                  [0,0,0,0,0,0,0,0,0]
  return p.getSolution() # find and return a solution
```

Local search for constraint problems

- Remember local search?
- There's a version of local search for CSP problems
- Basic idea:
 - -generate a random "solution"
 - -Use metric "number of violated constraints"
 - Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search like....?

Min Conflict Example

- •States: 4 Queens, 1 per column
- Operators: Move a queen in its column
- Goal test: No attacks
- Evaluation metric: Total number of attacks



How many conflicts does each state have?

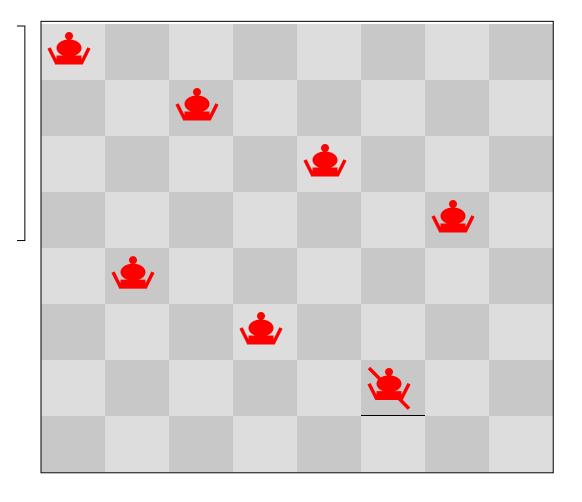
Basic Local Search Algorithm

Assign one domain value d_i to each variable v_i while no solution & not stuck & not timed out:

```
bestCost \leftarrow \infty; bestList \leftarrow [];
for each variable v<sub>i</sub> | Cost(Value(v<sub>i</sub>)) > 0
    for each domain value d<sub>i</sub> of v<sub>i</sub>
         if Cost(d<sub>i</sub>) < bestCost
               bestCost \leftarrow Cost(d<sub>i</sub>); bestList \leftarrow [d<sub>i</sub>];
         else if Cost(d<sub>i</sub>) = bestCost
               bestList \leftarrow bestList \cup d<sub>i</sub>
Take a randomly selected move from bestList
```

Eight Queens using Backtracking

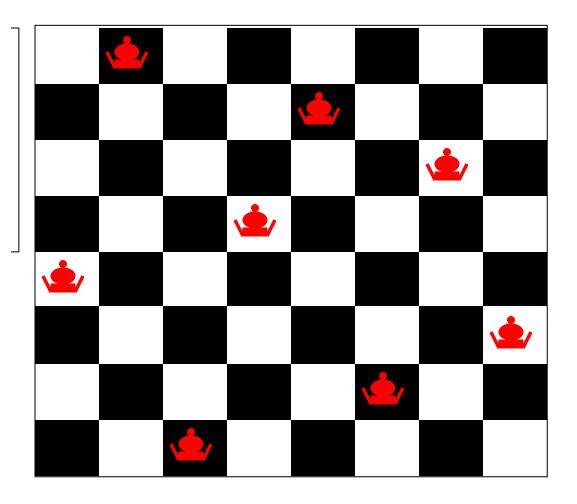
Undo move for Queen 7 and so on...



Note: in this example we put one queen in each row, not column

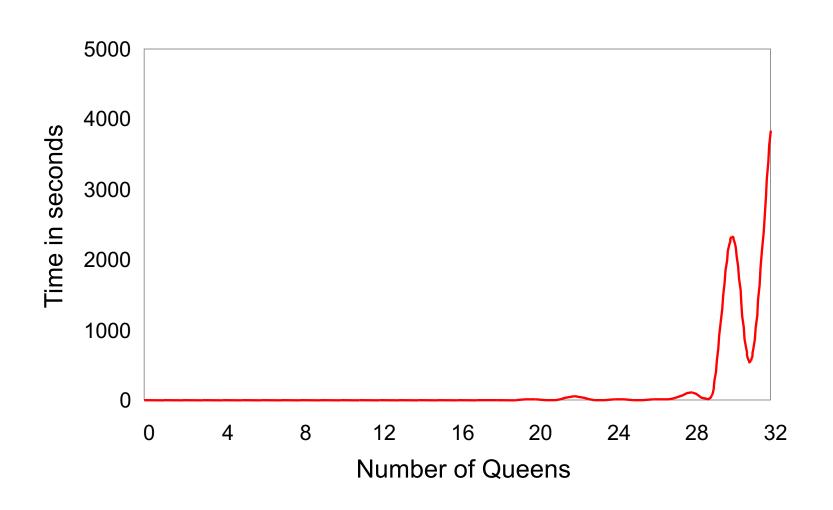
Eight Queens using Local Search

Answer Found

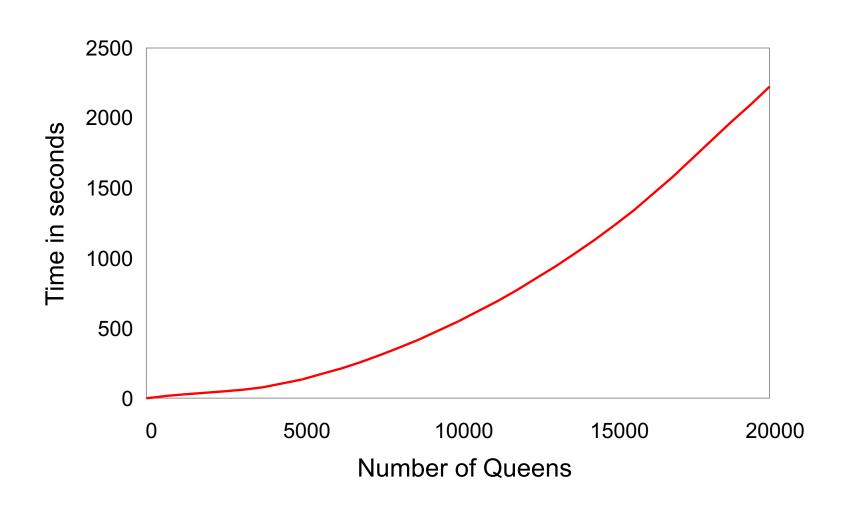


Note: in this example we put one queen in each row, not column

Backtracking Performance



Local Search Performance

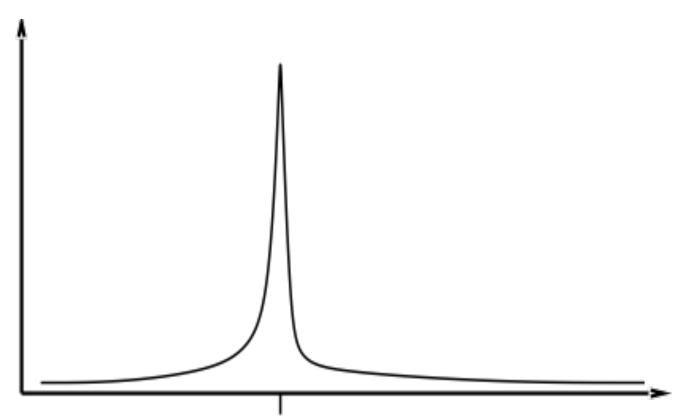


Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- Can solve arbitrary size (i.e., millions) N Queens problems in constant time
- Appears to hold for arbitrary CSPs with the caveat...

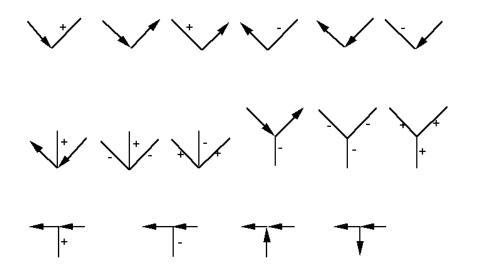
Min Conflict Performance

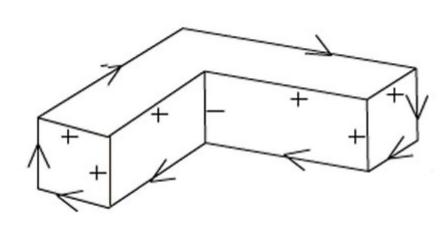
Except in a certain critical range of the ratio constraints to variables.



Famous example: labeling line drawings

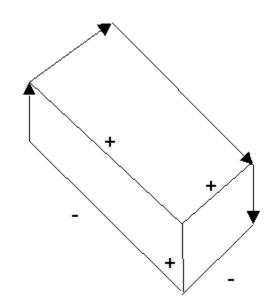
- Waltz labeling algorithm was one of the earliest AI CSP application (1972)
 - Convex interior lines labeled as +
 - Concave interior lines labeled as -
 - Boundary lines labeled as → with background to left
- 208 potential labelings for vertices, but only 18 are legal for simple blocks world scenes
- A line must have a single labeling



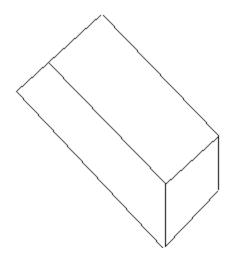


Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found



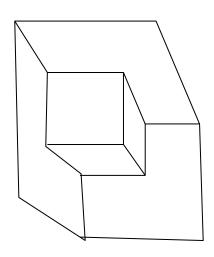
solution for one labeling problem



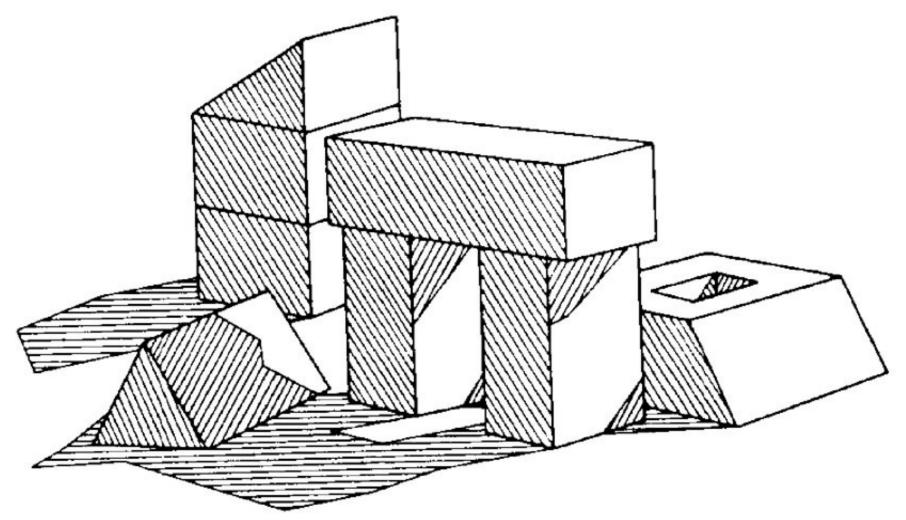
labeling problem with no solution

Labeling line drawings

This line drawing is ambiguous, with two interpretations



Shadows add complexity



CSP was able to label scenes where some of the lines were caused by shadows

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints vs. preferences
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - Symbolic constraints
 - Logical constraints
 - Numerical constraints [constraint solving]
 - Temporal constraints
 - Mixed constraints

Summary

- Many problems can be effectively modeled as constraints solving problems
- Arc consistency is simple yet powerful
- The approach is very good at reducing search needed
- Constraints are also useful for local search
- There's a lot of complexity in many realworld problems that require additional ideas and tools