
P8.py

8 puzzle in python
• Look at a simple implementation of an eight

puzzle solver in python
• p8.py
• Solve using A* with three different heuristics
–NIL: h = 1
–OOP: h = # of tiles out of place
–MHD: h = sum of manhatten distance

between each tile’s current & goal positions
• All three are admissible

http://www.csee.umbc.edu/courses/graduate/671/fall12/code/python/p8.py

What must we model?

• A state
• Goal test
• Actions
• Result of doing action in state
• Heuristic function

Representing states and actions
• Represent state as string of nine characters

with blank as *
E.g.: s = '1234*5678'

• Position of blank in state S is
> s.index('*')
4

1 2 3
4 * 5
6 7 8

• Represent an action as one of four possible
ways to move the blank:
up down right left

Legal Actions
def actions8(s): # returns list of legal actions in state s

action_table = {
0:['down', 'right'],
1:['down', 'left', 'right'],
2:['down', 'left'],
3:['up', 'down', 'right'],
4:['up', 'down', 'left', 'right'],
5:['up', 'down', 'left'],
6:['up', 'right'],
7:['up', 'left', 'right'],
8:['up', 'left'] }

return action_table[s.index('*')]

0 1 2
3 4 5
6 7 8

Function maps a
position to a list
of possible moves
for a tile in that
position

Result of action A on state S
def result8(S, A):

blank = S.index('*') # blank position
if A == 'up':

swap = blank - 3
return S[0:swap] + '*' + S[swap+1:blank] + S[swap] + S[blank+1:]

elif A == 'down':
swap = blank + 3
return S[0:blank] + S[swap] + S[blank+1:swap] + '*' + S[swap+1:]

elif A == 'left':
swap = blank - 1
return S[0:swap] + '*' + S[swap] + S[blank+1:]

elif A == 'right':
swap = blank + 1
return S[0:blank] + S[swap] + '*' + S[swap+1:]

raise ValueError('Unrecognized action: ' + A)

Heuristic functions
class P8_h1(P8):

""" Eight puzzle using a heuristic function that counts number
of tiles out of place"””
name = 'Out of Place Heuristic (OOP)’

def h(self, node):
""”OOP 8 puzzle heuristic: number of tiles 'out of place'
between a node's state and the goal"""
mismatches = 0
for (t1, t2) in zip(node.state, self.goal):

if t1 != t2: mismatches =+ 1
return mismatches

Path_cost method

Since path cost is just the number of steps, we
can use the default version define in Problem

def path_cost(self, c, state1, action, state2):
"""Return cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""

return c + 1

How can we test this?
• Need solvable test problems that aren’t too hard
– Recall that the state space has two disjoint sets!
– Generating a random initial & goal states will result in

no possible solution 50% of the time

• Idea: take a random walk of N steps from the goal
– Resulting state is solvable in ≤ N moves
– Ensure random walk has no loops for a better test

• What metrics can we use to compare heuristics?
– # of states generated, # of states expanded, effective

branching factor (efb), and run time

Example
• Generate tests of different distances from *12345678

15 steps: 4*3275681 => *12345678
19 steps: 4258361*7 => *12345678

• Solve using three heuristics, collect data
heuristic

used
solution
length

states
generated

successors
computed

effective
branching fac.

runtime in
seconds

NIL 15 14,386 5,173 1.77 5.47145

OOP 15 761 283 1.46 0.02097

MHD 15 87 31 1.26 0.00086

NIL 19 78,872 28,567 1.72 159.1051

OOP 19 3,906 1,457 1.47 0.4217

MHD 19 499 185 1.32 0.1238

P8 Problem on Colab
• See our collection of AI notebooks on Colab and the

code and data in our repo
• P8.ipynb which uses p8.py and search.py

https://drive.google.com/drive/u/0/folders/1PAFe3Yv1e3rQAvQC-ZSrF-DF4hsxxr8Q
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data
https://colab.research.google.com/drive/17Pp-T7qQpuuMJfQn5bSsYkrPHGg144hJ
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data/blob/main/p8.py
https://github.com/https-github-com-UMBC-CMSC-471-S22/code-and-data/blob/main/search.py

