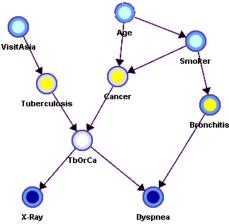
15.2



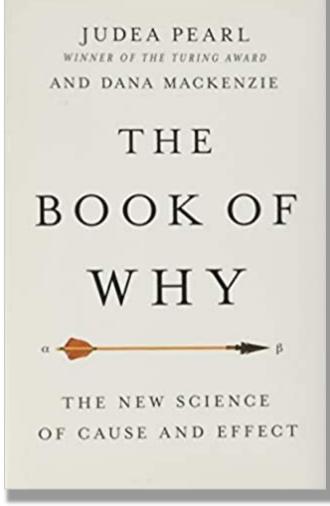
Reasoning with Bayesian Belief Networks

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- BBNs encode causal associations between facts and events the propositions represent
- Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

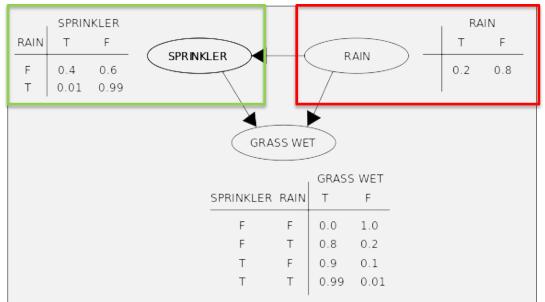
Judea Pearl

- UCLA CS professor
- Introduced <u>Bayesian</u>
 <u>networks</u> in the 1980s
- Pioneer of probabilistic approach to AI reasoning
- First to formalize causal modeling in empirical sciences
- Written many books on the topics, including the popular 2018 <u>Book of Why</u>



BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a <u>DAG</u>) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
- Nodes have prior probabilities or conditional probability tables (CPTs)



source

Recall Bayes Rule

$$P(H, E) = P(H | E)P(E) = P(E | H)P(H)$$

Note symmetry: we can compute probability of a *hypothesis given its evidence* as well as probability of *evidence given hypothesis*

 $S \in \{no, light, heavy\}$ (Smoking)-Cancer

 $C \in \{none, benign, malignant\}$

Nodes represent · variables

 $S \in \{no, light, heavy\}$ (Smoking)

 Smoking variable represents person's degree of smoking and has three possible values (no, light, heavy)

Cancer

 $C \in \{none, benign, malignant\}$

 Cancer variable represents person's cancer diagnosis and has three possible values (none, benign, malignant)

 $S \in \{no, light, heavy\}$ (Smoking)

- **tl;dr:** smoking effects cancer
- **Smoking** behavior effects the probability of **cancer** outcome
- Smoking behavior considered evidence for whether a person is likely to have cancer or not

Directed links represent *"causal"* relations

Cancer

 $C \in \{none, benign, malignant\}$

 $S \in \{no, light, heavy\}$ Smoking Cancer

Prior probability of S

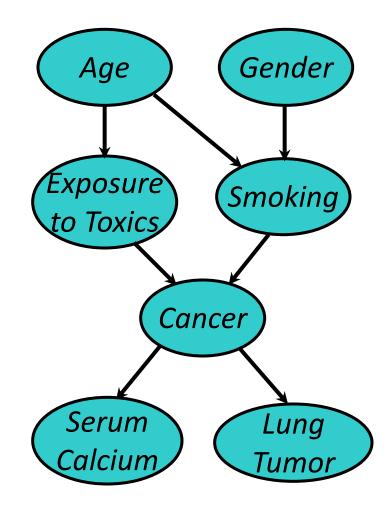
P(S=no)	0.80
P(S=light)	0.15
P(S=heavy)	0.05

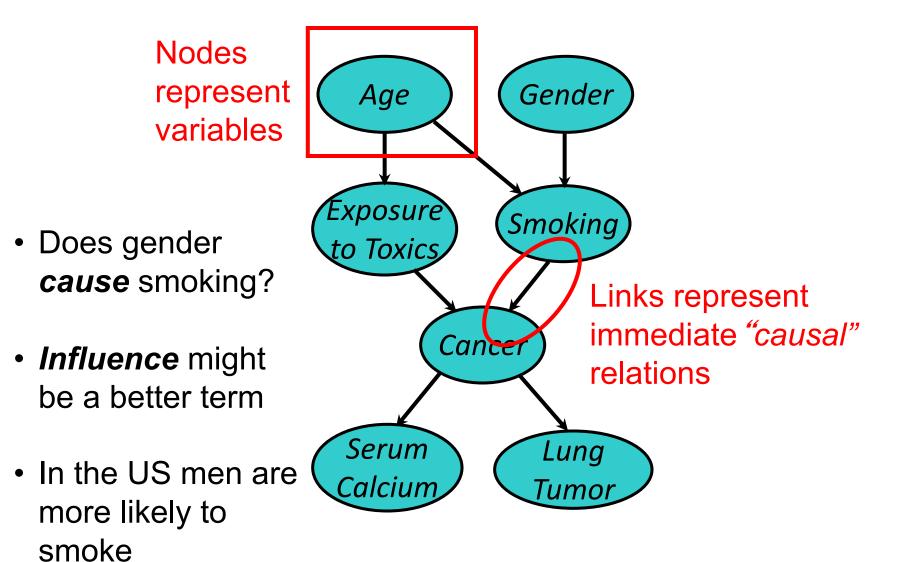
 $C \in \{none, benign, malignant\}$

Nodes without in-links have prior probabilities

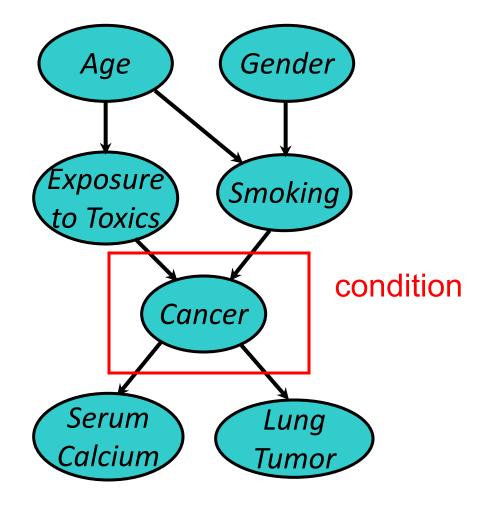
Joint distribution of S and C

Nodes with in-links have joint probability distributions	Smoking=	no	light	heavy
	C=none	0.96	0.88	0.60
		0.03	0.08	0.25
	C=malignant	0.01	0.04	0.15

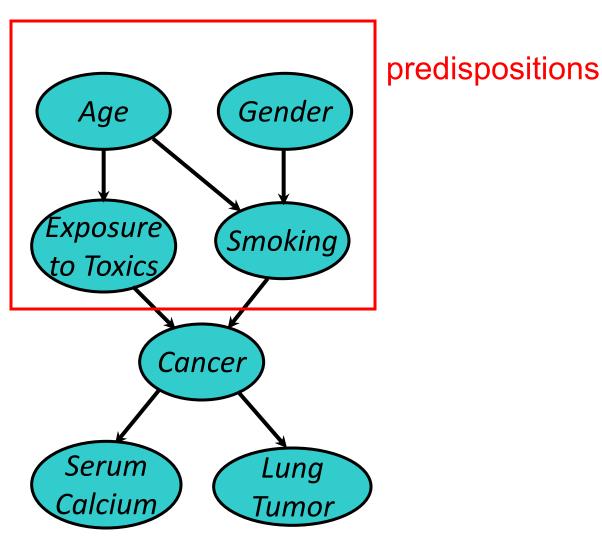




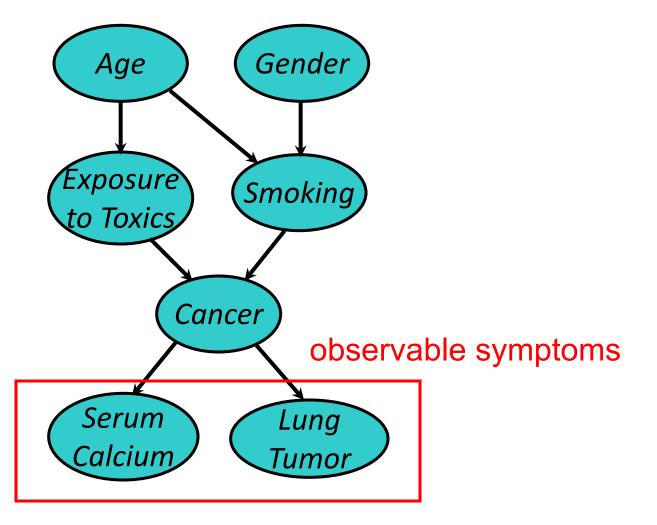
 Condition: the thing we want to predict



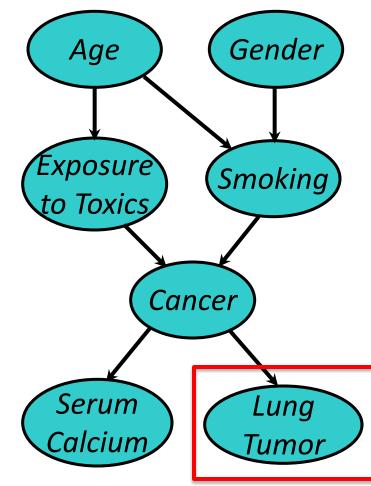
- Condition: the thing we want to predict
- Predisposition: things that effect condition's likelihood
- Symptom: observations suggesting the condition holds or not



- Condition: the thing we want to predict
- Predisposition: things that effect condition's likelihood
- Symptom: observations suggesting the condition holds or not



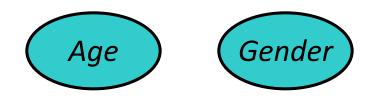
Can we predict likelihood of **lung tumor** given values of other six variables?



- Model has 7 variables
- Complete joint probability distribution has 7 dimensions!
- Too much data required ⊗
- BBN simplifies: nodes have a
 CPT with data on itself & parents in graph

CPT = conditional probability table

Independence



Age and Gender are independent*

No path between them in the graph

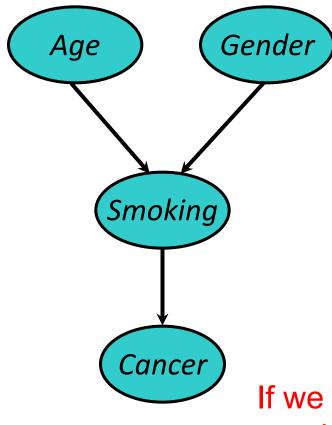
$$P(A,G) = P(G) * P(A)$$

$$P(A | G) = P(A)$$
$$P(G | A) = P(G)$$

P(A,G) = P(G|A) P(A) = P(G)P(A)P(A,G) = P(A|G) P(G) = P(A)P(G)

* Not strictly true, but a reasonable approximation

Conditional Independence

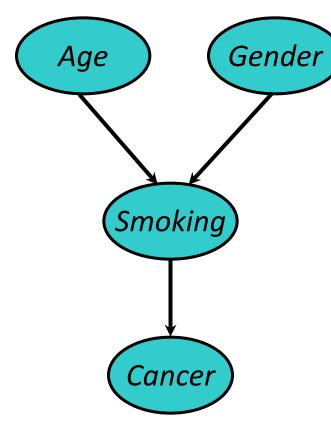


Cancer is independent of Age and Gender given Smoking

$$P(C \mid A,G,S) = P(C \mid S)$$

If we know value of smoking, there is no need to know values of age or gender

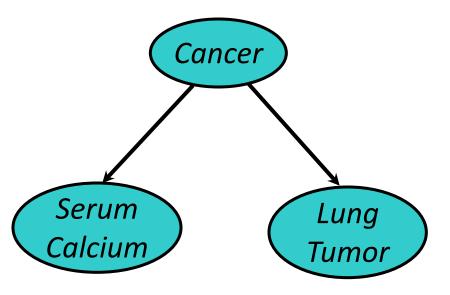
Conditional Independence



Cancer is independent of Age and Gender given Smoking

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models (2³ +2²) rather than 16 (2⁴)

Conditional Independence: Naïve Bayes



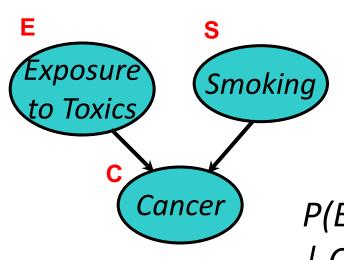
Serum Calcium and Lung Tumor are dependent (their presence is correlated)

Serum Calcium is independent of *Lung Tumor* given *Cancer*

 $P(L \mid SC,C) = P(L|C)$ $P(SC \mid L,C) = P(SC|C)$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

Explaining Away



Exposure to Toxics and Smoking are independent

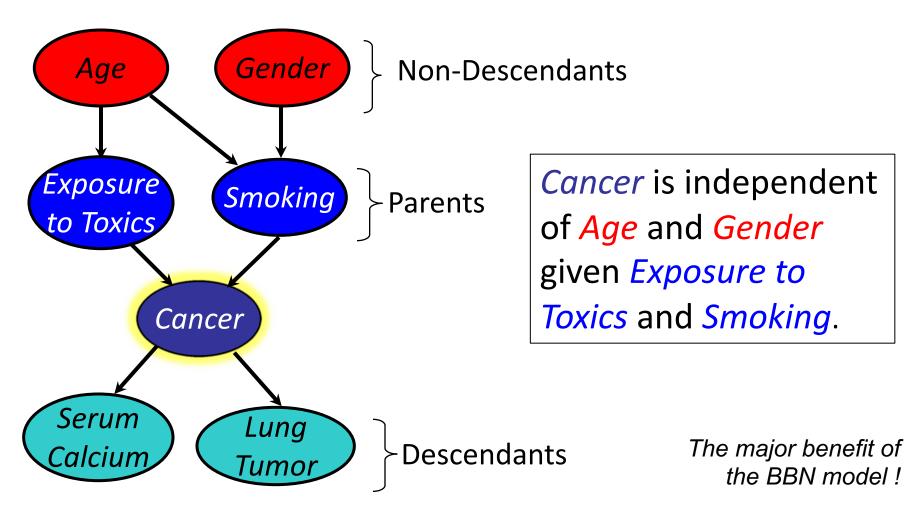
Exposure to Toxics is **dependent** on *Smoking*, given *Cancer*

P(E=heavy | C=malignant) > P(E=heavy
| C=malignant, S=heavy)

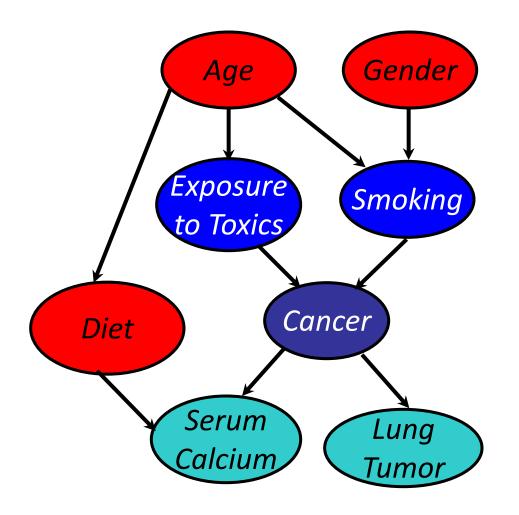
- *Explaining away:* reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of <u>Occam's Razor</u> (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents



Another non-descendant



A variable is conditionally independent of its non-descendants given its parents

Cancer is independent of *Diet* given *Exposure to Toxics* and *Smoking*

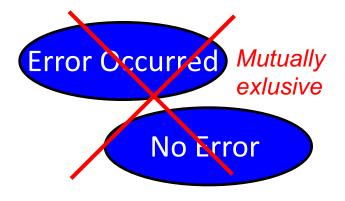
BBN Construction

- The <u>knowledge acquisition</u> process for a BBN involves three steps
 - **KA1**: Choosing appropriate variables
 - KA2: Deciding on the network structure
 - KA3: Obtaining the conditional probability table data

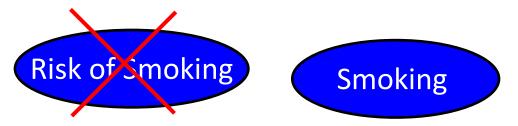
KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively *exhaustive*, *mutually exclusive* values

$$x_1 \lor x_2 \lor x_3 \lor x_4$$
$$\neg (x_i \land x_i) \quad i \neq j$$



• They should be values, not probabilities

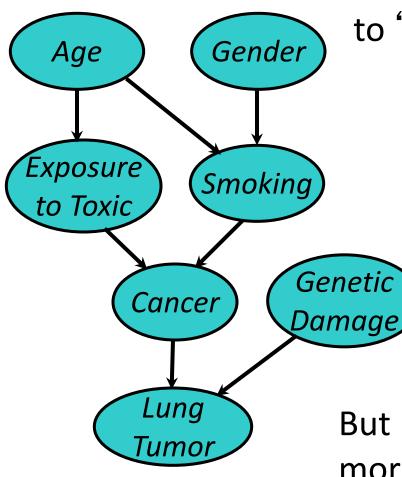


Heuristic: Knowable in Principle

Example of good variables

- Weather: {Sunny, Cloudy, Rain, Snow}
- Gasoline: \$ per gallon {<2, 2-3, 3-4, >4}
- Temperature: { ≥ 100 F , < 100 F}
- User needs help on Excel Charts: {Yes, No}
- User's personality: {dominant, submissive}

KA2: Structuring



Network structure corresponding to "causality" is usually good.

Initially this uses designer's knowledge and intuitions but can be checked with data

> May be better to add suspected links than to leave out

But bigger CPT tables mean more joint data must be collected

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its **parents**
- For variables w/o parents, we have prior probabilities

 $S \in \{no, light, heavy\}$ $C \in \{none, benign, malignant\}$



smoking priors			
no	0.80		
light	0.15		
heavy	0.05		

	smoking			
cancer	no	light	heavy	
none	0.96	0.88	0.60	
benign	0.03	0.08	0.25	
malignant	0.01	0.04	0.15	

KA3: The numbers

- Second decimal usually doesn't matter
- Relative probabilities are important

🖏 Assess probabilities for: I-TypingSpeed_avg				
I-TypingSpeed				
E-Arousal	Fast	Normal	Slow	
Passive	.20	.28	.52	
Neutral	.33	.33	.33	
Excited	.56	.27	.16	
Cancel				

- Zeros and ones are often enough
- Order of magnitude is typical: 10⁻⁹ vs 10⁻⁶
- Sensitivity analysis can be used to decide accuracy needed

Three kinds of reasoning

BBNs support three main kinds of reasoning:

• Predicting conditions given predispositions

"You are likely to get cancer since you are a heavy smoker"

• **Diagnosing** conditions given symptoms

"You're likely to have cancer given your high serum calcium level"

• Explaining a condition by predispositions

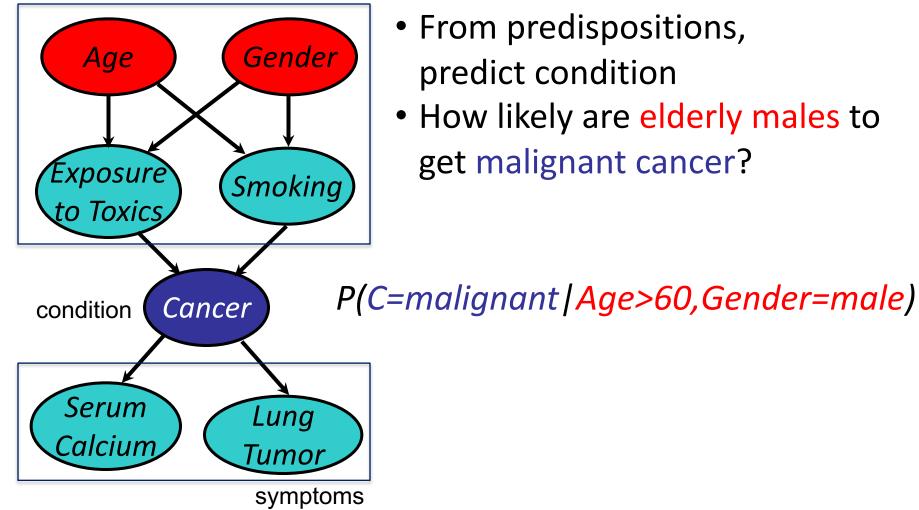
"Your cancer was probably caused by your exposure to lead"

To which we can add a fourth:

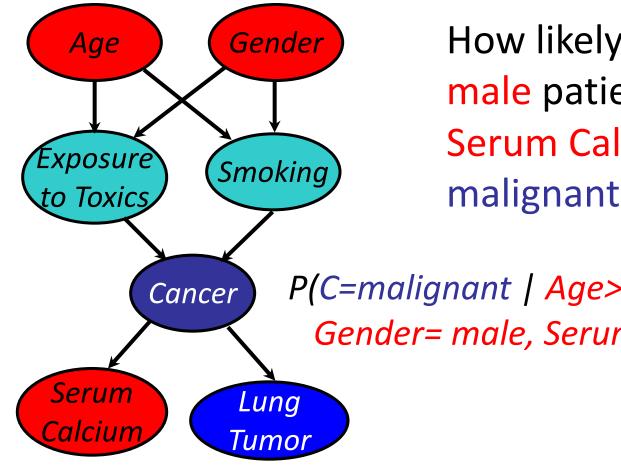
• **Deciding** on an action based on condition probabilities "We should remove the lung tumor which might be cancerous"

Predictive Inference

predispositions



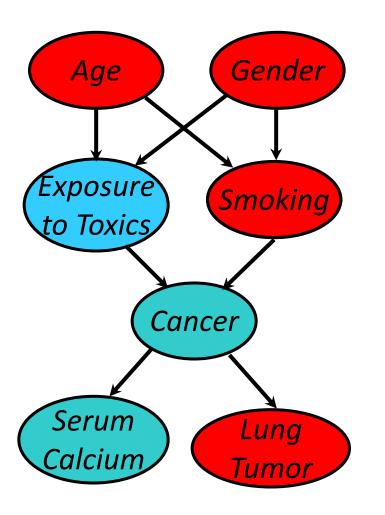
Predictive and diagnostic combined



How likely is an elderly male patient with high Serum Calcium to have malignant cancer?

P(C=malignant | Age>60, Gender= male, Serum Calcium = high)

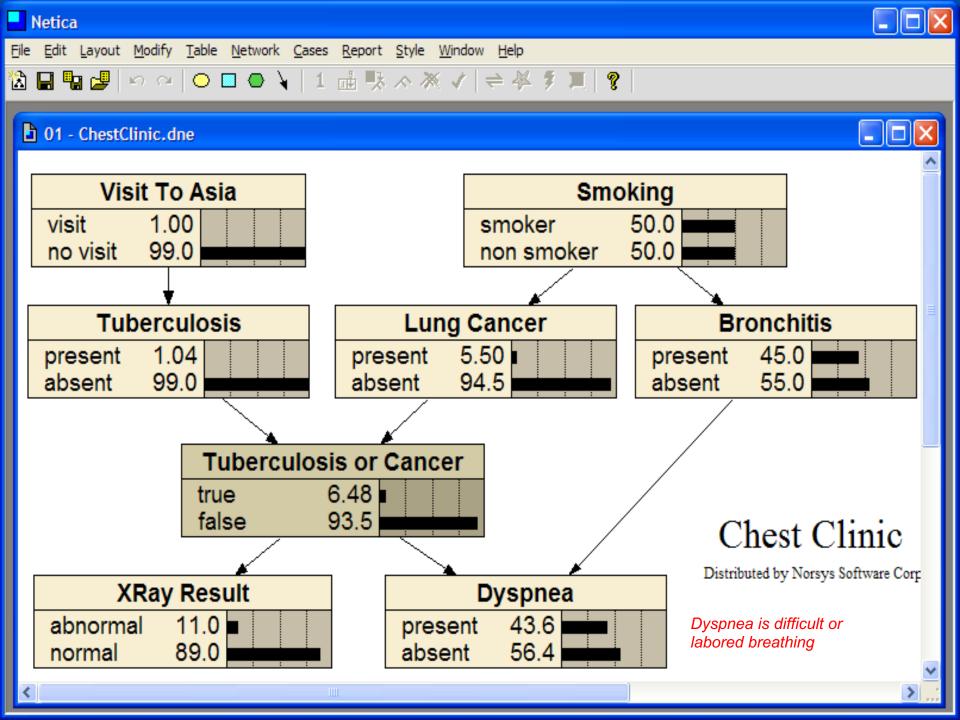
Explaining away

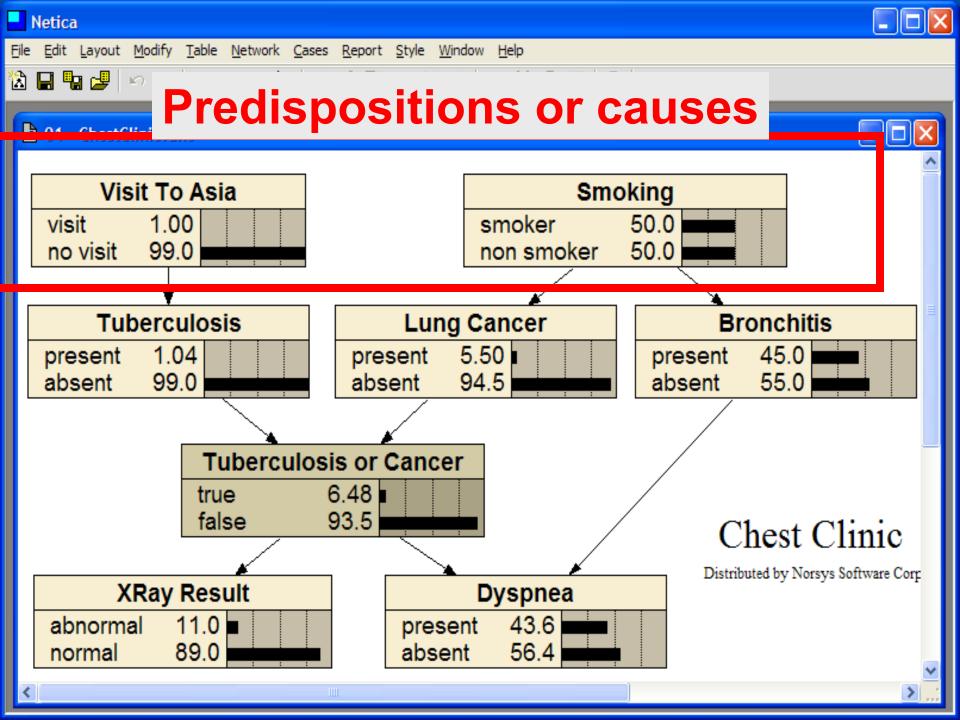


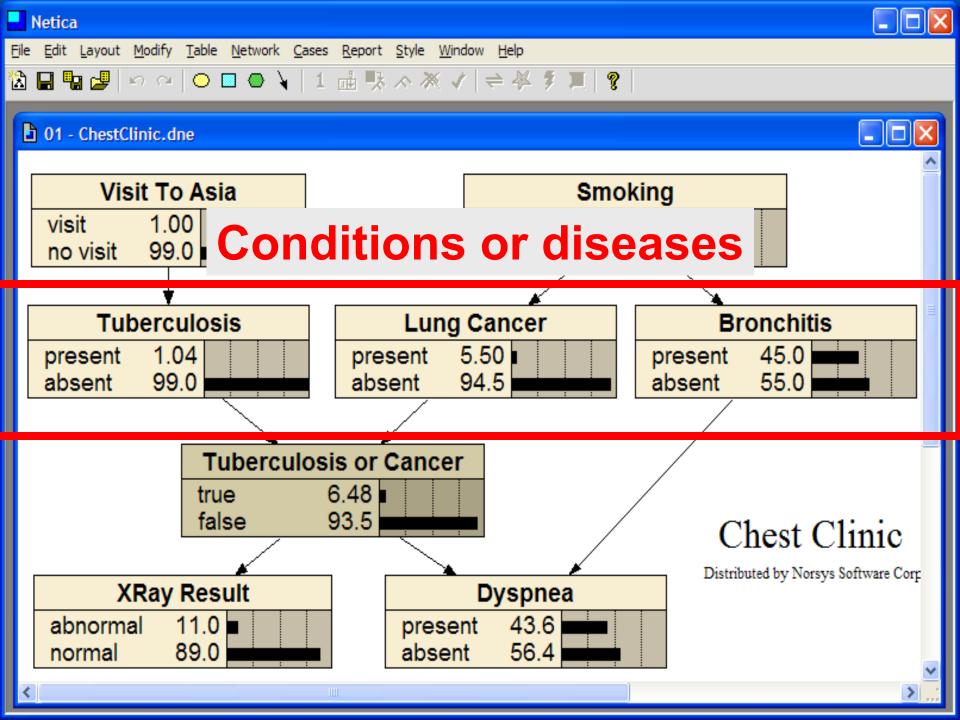
- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up
- If we then observe heavy smoking, the probability of exposure to toxics goes back down

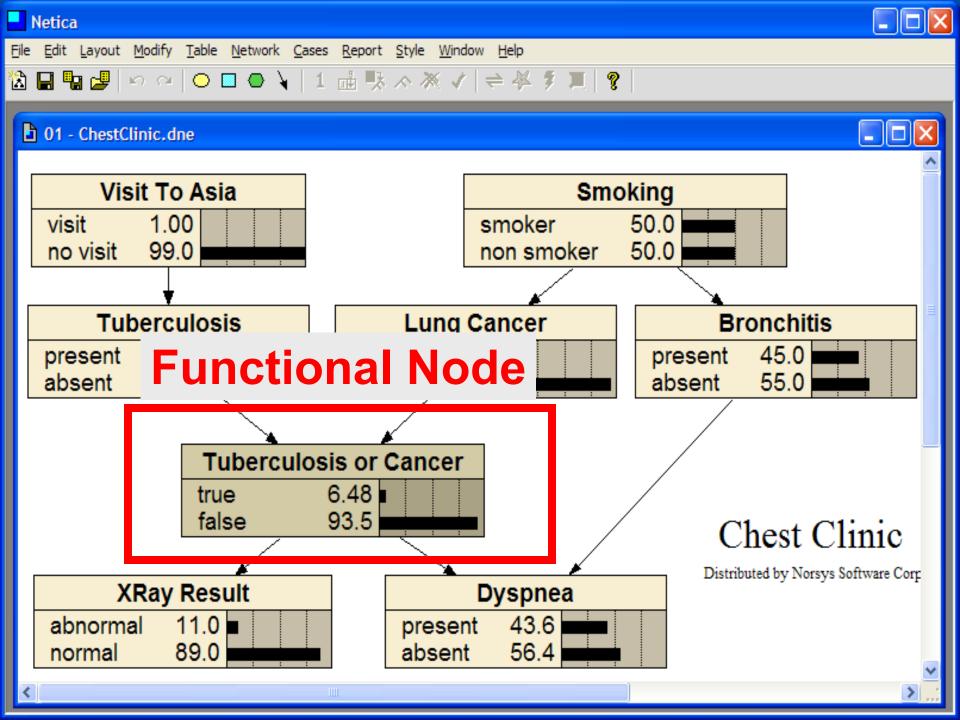
Some software tools

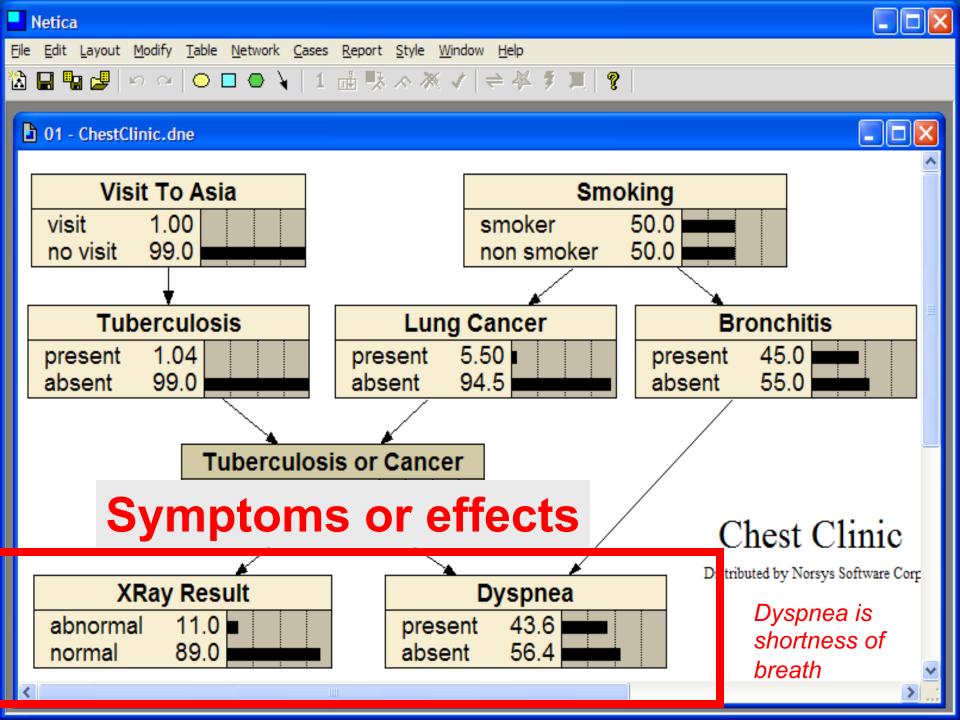
- <u>Netica</u>: Windows app for working with Bayesian belief networks and influence diagrams
 - Commercial product, free for small networks
 - Includes graphical editor, compiler, inference engine, etc.
 - -To run in OS X or Linus you need Wire or Crossover
- <u>Hugin</u>: free demo versions for Linux, Mac, and Windows are available
- <u>BBN.ipynb</u> based on an AIMA notebook



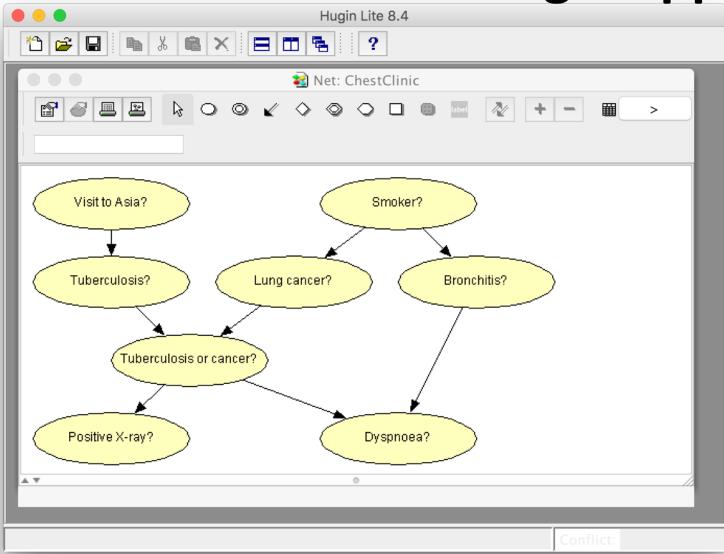








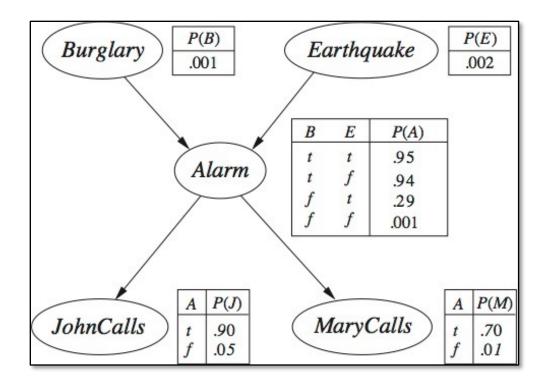
Same BBN model in Hugin app



See the short HUGIN Tutorial on YouTube

Python Code

See this <u>AIMA notebook</u> on colab showing how to construct this BBN Network in Python



Judea Pearl example

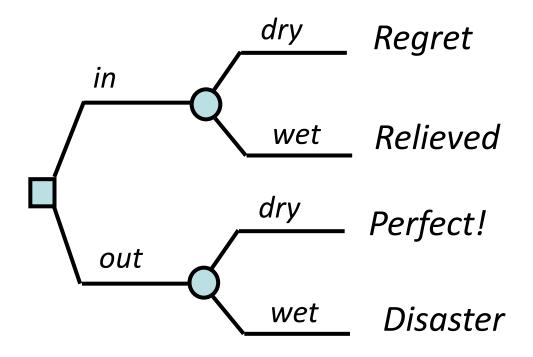
There's is a house with a burglar alarm that can be triggered by a burglary or earthquake. If it sounds, one or both neighbors John & Mary, might call the owner to say the alarm is sounding.

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
 - Beliefs/Uncertainties
 - Alternatives/Decisions
 - Objectives/Utilities

Decision Problem

Should I have my party inside or outside?



Value Function

A numerical score over all possible states allows a BBN to be used to make decisions

Location?	Weather?	Value
in	dry	\$50
in	wet	\$60
out	dry	\$100
out	wet	\$0

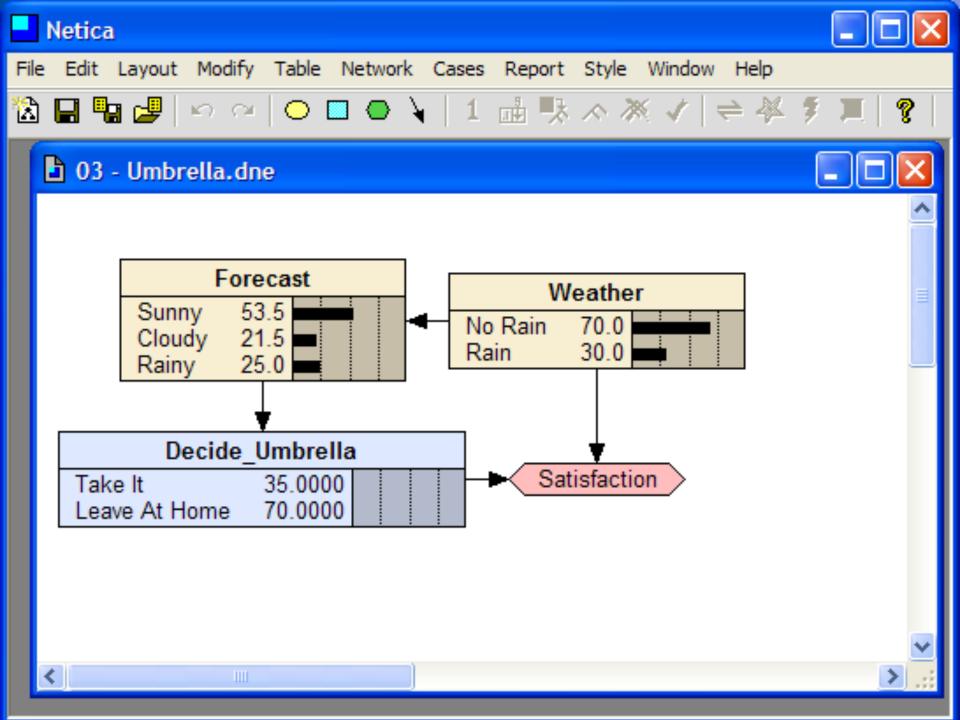
Using \$ for the value helps our intuition

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast —Forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - Assign utility measure to each of four situations: (rain|no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: **decision** and **utility**
- Decision node computes expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- Utility node computes utility value given its parents, e.g., a decision and weather
 - Assign utility to each situations: (rain | no rain) x (umbrella, no umbrella)
 - Utility value assigned to each is probably subjective



Netica		
<u>F</u> ile <u>E</u> dit <u>T</u> able <u>W</u> indow <u>H</u> elp		
🔀 🖬 📲 🔄 🗠 🔍 🔍 🖷 🖷 🔪 1 🚠 🗏 스 💥 🗸 之 🐥 🌮 🌉 💡 📒		
O3		
Weather Decide_Umbrella	Satisfaction	
No Rain Take It	20	
Take No Rain Leave At Home	100	
Leave Rain Take It	70	
Rain Leave At Home	0	
	< ►	

