15.1

Bayesian Reasoning Chapters 12 & 13

Thomas Bayes, 1701-1761

Today's topics

- Motivation
- Review probability theory
- Bayesian inference
 - -From the joint distribution
 - –Using independence/factoring
 - -From sources of evidence
- Naïve Bayes algorithm for inference and classification tasks

Motivation: causal reasoning

- As the sun rises, the rooster crows
 - Does this correlation imply causality?
 - -If so, which way does it go?
- The evidence can come from
 - Probabilities and Bayesian reasoning
 - -Common sense knowledge
 - Experiments
- Bayesian Belief Networks (<u>BBNs</u>) are useful for modeling <u>causal reasoning</u>

Many Sources of Uncertainty

- Uncertain inputs -- missing and/or noisy data
- Uncertain knowledge
 - -Multiple causes lead to multiple effects
 - -Incomplete enumeration of conditions or effects
 - -Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - -<u>Abduction</u> and <u>induction</u> inherently uncertain
 - Default reasoning, even deductive, is uncertain
 - -Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results

Decision making with uncertainty

Rational behavior: for each possible action:

- Identify possible outcomes and for each
 - -Compute **probability** of outcome
 - -Compute **utility** of outcome
- Compute probability-weighted (expected) utility over possible outcomes
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?
 - -Someone has broken in!
 - -It's a minor earthquake

Probability theory 101

• Random variables:

– Domain

• Atomic event:

complete specification of state

• Prior probability:

degree of belief without any other evidence or info

Joint probability: matrix of combined probabilities of set of variables

- Alarm, Burglary, Earthquake Boolean (these) or discrete (0-9), continuous (float)
- Alarm=T^Burglary=T^Earthquake=F alarm ^ burglary ^ -earthquake
- P(Burglary) = 0.1
 P(Alarm) = 0.1
 P(earthquake) = 0.000003
- P(Alarm, Burglary) =

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

Probability theory 101

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
 - $P(a | b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a | b) * P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B | a) P(a)$ (conditioning)

- P(burglary | alarm) = .47
 P(alarm | burglary) = .9
- P(burglary | alarm) = P(burglary ^ alarm) / P(alarm) = .09/.19 = .47
- P(burglary \wedge alarm) =

 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) = P(alarm \land burglary) + P(alarm \land ¬burglary) = .09+.1 = .19

alarm alarm burglary .09 .01 -burglary .1 .8

Probability theory 101

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - − P(a ∧ b) = P(a | b) * P(b)
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B | a) P(a)$ (conditioning)

- P(burglary | alarm) = .47
 P(alarm | burglary) = .9
- P(burglary | alarm) =
 P(burglary alarm) / P(alarm)
 = .09/.19 = .47
- P(burglary ^ alarm) =
 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) = P(alarm \land burglary) + P(alarm $\land \neg$ burglary) = .09+.1 = .19

Example: Inference from the joint

	ala	rm	−alarm	
	earthquake	rthquake -earthquake		¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

 $P(burglary | alarm) = \alpha P(burglary, alarm)$

= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake) = α [(.01, .01) + (.08, .09)] = α [(.09, .1)]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19 - quizlet$: how can you verify this?)

P(burglary | alarm) = .09 * 5.26 = .474

 $P(\neg burglary | alarm) = .1 * 5.26 = .526$

Consider

- A student has to take an exam
 - -She might be smart
 - -She might have studied
 - -She may be prepared for the exam
- How are these related?
- We can collect joint probabilities for the three events
 - -Measure "prepared" as "got a passing grade"

Exercise:

Inference from the joint

p(smart \land study	smart		—smart	
∧ prepared)	study	study	study	—study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Each of the eight highlighted boxes has the joint probability for the three values of smart, study, prepared

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(smart) = .432 + .16 + .048 + .16 = 0.8

Inference from the joint

p(smart \land study	smart		smart	
∧ prepared)	study	study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

Exercise:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

Inference from the joint

p(smart \land study	smart		smart	
∧ prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

Exercise:

Inference from the joint

p(smart \land study	smart		smart	
∧ prepared)	study	−study	study	—study
prepared	.432	.16	.084	.008
	.048	.16	.036	.072

Queries:

Exercise:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(study) = .432 + .048 + .084 + .036 = **0.6**

Inference from the joint

p(smart \land study	smart		smart	
\land prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

Exercise:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

Exercise:

Inference from the joint

p(smart \land study	smart		smart	
∧ prepared)	study	_study	study	—study
prepared	.432	.16	.084	.008
	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?

p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)
= .432 / (.432 + .048)
= 0.9

Independence

 When variables don't affect each others' probabilities, they are independent; we can easily compute their joint & conditional probability:

Independent(A, B) \rightarrow P(A \land B) = P(A) * P(B) or P(A|B) = P(A)

- {moonPhase, lightLevel} might be independent of {burglary, alarm, earthquake}
 - Maybe not: burglars may be more active during a new moon because darkness hides their activity
 - But if we know light level, moon phase doesn't affect whether we are burglarized
 - If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

p(smart \land study	smart		smart	
∧ prepared)	study	—study	study	—study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- -Q1: Is *smart* independent of *study*?
- -Q2: Is *prepared* independent of *study*?

How can we tell?

p(smart \land study \land prepared)	smart		smart	
	study	—study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

p(smart \land study	smart		smart	
\land prepared)	study	_study	study	¬study
prepared	.432	.16	.084	.008
prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

Q1 true iff p(smart|study) == p(smart)

p(smart) = .432 + 0.048 + .16 + .16 = 0.8

p(smart|study) = p(smart,study)/p(study)

= (.432 + .048) / .6 = 0.48/.6 = **0.8**

0.8 == 0.8 : smart is independent of study

p(smart study ^ prep)	smart		smart	
	study	study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- What is prepared?
- •Q2 true iff

p(smart ^ study ^ prep)	smart		smart		
	study	study	study	study	
	prepared	.432	.16	.084	.008
	-prepared	.048	.16	.036	.072

Q2: Is prepared independent of study?

Q2 true iff p(prepared|study) == p(prepared) p(prepared) = .432 + .16 + .84 + .008 = .684 p(prepared|study) = p(prepared,study)/p(study) = (.432 + .084) / .6 = .86

0.86 ≠ 0.684, ∴ prepared not independent of study

Absolute & conditional independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) * P(B)$; equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are **conditionally independent** given C if

 $-P(A \land B | C) = P(A | C) * P(B | C)$

If it holds, lets us decompose the joint distribution:

 $-P(A \land B \land C) = P(A | C) * P(B | C) * P(C)$

- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but useful in decomposing full joint probability distribution

Conditional independence

- Intuitive understanding: conditional independence often comes from causal relations
 - FullMoon causally affects LightLevel at night as does StreetLights
- For our burglary scenario, FullMoon doesn't affect anything else
- Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary

Bayes' rule

-P(A, B) = P(B, A)

Derived from the product rule:

-P(A, B) = P(A|B) * P(B) # from definition of conditional probability

- -P(B, A) = P(B|A) * P(A) # from definition of conditional probability
 - *# since order is not important*

So...

Useful for diagnosis!

- C is a cause, E is an effect: -P(C|E) = P(E|C) * P(C) / P(E)
- Useful for diagnosis:

P(A|B) = P(B|A)P(A)P(B) P(B|A) = P(A|B)P(B)P(A) Prior probability LikelihoodPosterior probability

- E are (observed) effects and C are (hidden) causes,
- -Often have model for how causes lead to effects P(E|C)
- May also have info (based on experience) on frequency of causes (P(C))
- Which allows us to reason <u>abductively</u> from effects to causes (P(C|E))
- Recall, abductive reasoning: from A => B and B, infer (maybe?) A

Example: meningitis and stiff neck

cause

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a *diagnostic symptom* and estimate
 p(M|S)
- Studies can estimate p(M), p(S) & p(S|M), e.g. p(S|M)=0.7, p(S)=0.01, p(M)=0.00002
- Harder to directly gather data on p(M|S)
- Applying Bayes' Rule:
 p(M|S) = p(S|M) * p(M) / p(S) = 0.0014

symptom

From multiple evidence to a cause

• In the setting of diagnostic/evidential reasoning

- $\begin{array}{ll} \mbox{ Know prior probability of hypothesis} & P(H_i) \\ & \mbox{ conditional probability} & P(E_j \,|\, H_i) \end{array}$
- Want to compute the *posterior probability* $P(H_i | E_j)$
- Bayes' s theorem:

$$P(H_i | E_j) = P(H_i) * P(E_j | H_i) / P(E_j)$$

Bayesian diagnostic reasoning

- Knowledge base:
 - -Evidence / manifestations: E₁, ... E_m
 - Hypotheses / disorders: H₁, ... H_n

Note: E_j and H_i **binary**; hypotheses **mutually exclusive** (non-overlapping) & **exhaustive** (cover all possible cases)

- Conditional probabilities: $P(E_j | H_i)$, i = 1, ..., n; j = 1, ..., m

- Cases (evidence for particular instance): E₁, ..., E₁
- Goal: Find hypothesis H_i with highest posterior - Max_i P($H_i | E_1, ..., E_i$)

Bayesian diagnostic reasoning (2)

- Prior vs. posterior probability
 - Prior: probability before we know the evidence, e.g., 0.005 for having COVID)
 - Posterior: probability after knowing evidence, e.g., 0.9 if patient tests positive for COVID
- Goal: find hypothesis H_i with highest posterior – Max_i P(H_i | E₁, ..., E_i)
- Requires knowing joint evidence probabilities $P(H_i | E_1...E_m) = P(E_1...E_m | H_i) P(H_i) / P(E_1...E_m)$
- Having many E_i is a big data collection problem!

Simplifying Bayesian diagnostic reasoning

- Having many E_i is a big data collection problem!
- Two ways to address this
- #1 use conditional independence to effect "causal reasoning" and eliminate some E_i
 - Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary
 - More on this later as **Bayesian Believe Networks**
- #2 Use a <u>Naïve Bayes</u> approximation that assumes evidence variables are all mutually independent

Naïve Bayesian diagnostic reasoning

• Bayes' rule:

 $P(H_i | E_1...E_m) = P(E_1...E_m | H_i) P(H_i) / P(E_1...E_m)$

Assume each evidence E_i is conditionally independent of the others, given a hypothesis H_i, then:

 $\mathsf{P}(\mathsf{E}_1...\mathsf{E}_m \mid \mathsf{H}_i) = \prod_{j=1}^{m} \mathsf{P}(\mathsf{E}_j \mid \mathsf{H}_i)$

- Easy to compute since we ignore evidence dependence
- Over-simplification for many reasons, but often used as a simple baseline

Summary

- Probability a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Answer queries by summing over atomic events
- Must reduce joint size for non-trivial domains
- Bayes rule: compute from known conditional probabilities, usually in causal direction
- Independence & conditional independence provide tools
- Next: Bayesian belief networks