# Bayesian Learning 

## Chapter 20.1-20.4

## Simple case: Naïve Bayes

- Use Bayesian modeling
- Make the simplest possible independence assumption:
-Each attribute is independent of the values of the other attributes, given the class variable
-In our restaurant domain: Cuisine is independent of Patrons, given a decision to stay (or not)


## Bayesian Formulation

- $p\left(C \mid F_{1}, \ldots, F_{n}\right)=p(C) p\left(F_{1}, \ldots, F_{n} \mid C\right) / P\left(F_{1}, \ldots, F_{n}\right)$

$$
=\alpha p(C) p\left(F_{1}, \ldots, F_{n} \mid C\right)
$$

- Assume each feature $F_{i}$ is conditionally independent of others given the class $C$. Then: $p\left(C \mid F_{1}, \ldots, F_{n}\right)=\alpha p(C) \Pi_{i} p\left(F_{i} \mid C\right)$
- Estimate each of these conditional probabilities from the observed counts in the training data:
$p\left(F_{i} \mid C\right)=N\left(F_{i} \wedge C\right) / N(C)$
- One subtlety of using the algorithm in practice: when your estimated probabilities are zero, ugly things happen
- Fix: Add one to every count (aka Laplace smoothingthey have a different name for everything!)


## Naive Bayes: Example

p (Wait | Cuisine, Patrons, Rainy?) =
$=\alpha \cdot p($ Wait $) \bullet p($ Cuisine $\mid$ Wait $) \bullet p($ Patrons $\mid$ Wait $) \bullet p($ Rainy $? \mid$ Wait $)$
$=p($ Wait $) \bullet p($ Cuisine $\mid$ Wait $) \bullet p($ Patrons $\mid$ Wait $) \bullet p($ Rainy ? $\mid$ Wait $)$ $p($ Cuisine $) \cdot p($ Patrons $) \cdot p($ Rainy )

We can estimate all of the parameters ( $p(F)$ and $p(C)$ just by counting from the training examples

## Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms-it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)-for that, we need Bayes nets!


## Learning Bayesian networks

- Given training set
- Find B that best matches D

$$
D=\{x[1], \ldots, x[M]\}
$$

- model selection
- parameter estimation


Data D

## Learning Bayesian Networks

-Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
-Both can be learned from data, but
-learning structure much harder than learning parameters
-learning when some nodes are hidden, or with missing data harder still
-Four cases:

| Structure | Observability | Method |
| :--- | :--- | :--- |
| Known | Full | Maximum Likelihood Estimation |
| Known | Partial | EM (or gradient ascent) |
| Unknown | Full | Search through model space |
| Unknown | Partial | EM + search through model space |

## Parameter estimation

- Assume known structure
- Goal: estimate BN parameters $\theta$
- entries in local probability models, $\mathrm{P}(\mathrm{X} \mid \operatorname{Parents}(\mathrm{X}))$
- A parameterization $\theta$ is good if it is likely to generate the observed data:

$$
L(\theta: D)=P(D \mid \theta)=\prod_{m} P(x[m] \mid \theta)
$$

- Maximum Likelihood Estimation (MLE) Principle:

Choose $\theta^{*}$ so as to maximize $L$

## Parameter estimation II

- The likelihood decomposes according to the structure of the network
$\rightarrow$ we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution:
- for each value $x$ of a node $X$
- and each instantiation $\boldsymbol{u}$ of $\operatorname{Parents}(X)$

$$
\theta_{x \mid u}^{*}=\frac{N(\boldsymbol{x}, \boldsymbol{u})}{N(\boldsymbol{u})} \text { sufficient statistics }
$$

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values


## Model selection

Goal: Select the best network structure, given the data Input:

- Training data
- Scoring function


## Output:

- A network that maximizes the score


## Structure selection: Scoring

- Bayesian: prior over parameters and structure
- get balance between model complexity and fit to data as a byproduct Marginal likelihood
- $\operatorname{Score}(\mathrm{G}: \mathrm{D})=\log \mathrm{P}(\mathrm{G} \mid \mathrm{D}) \alpha \log [\mathrm{P}(\mathrm{D} \mid \mathrm{G}) \mathrm{P}(\mathrm{G})]^{\text {b }}$
- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity


## Same key property: Decomposability

## Score $($ structure $)=\sum_{i}$ Score(family of $X_{i}$ )

Heuristic search


## Exploiting decomposability



## Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

