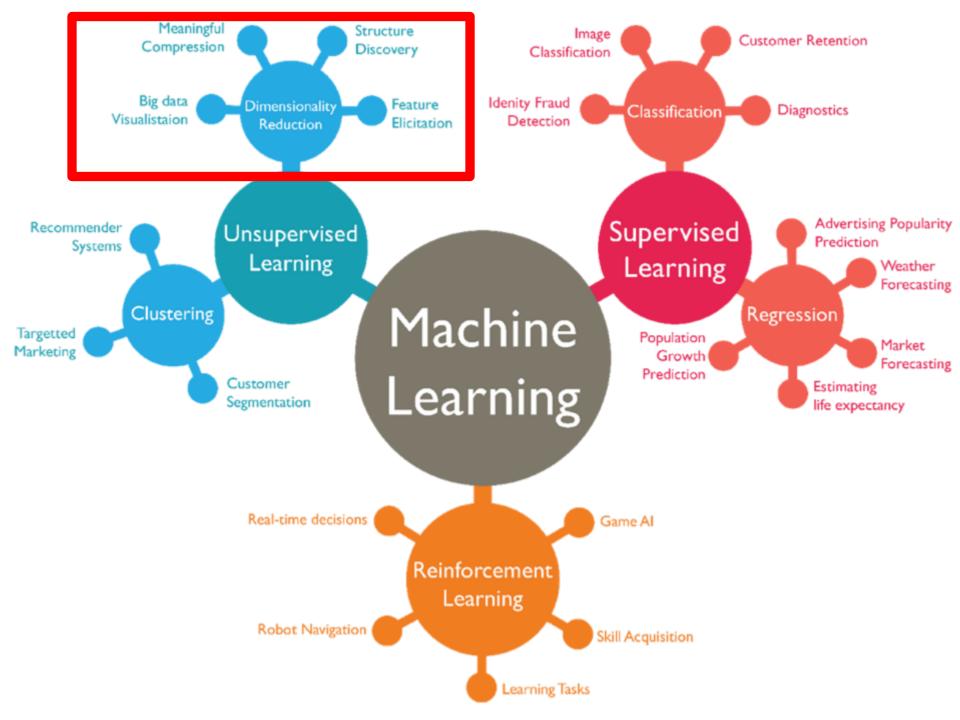


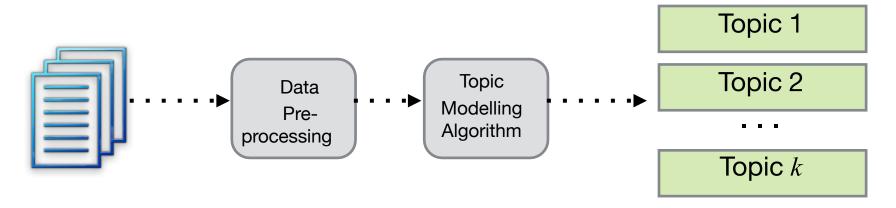
# Unsupervised Learning: Topic Modeling



## Documents cover multiple topics



# **Topic Modeling**



- Topic Modeling induces a set of topics from a document collection based on their words
- Output: A set of k topics, each of which is represented by
  - A descriptor, based on the top-ranked terms for the topic
  - Associations for documents relative to the topic.

# **Topic Modeling**

- If we want five topics for a set of newswire articles, the topics might correspond to politics, sports, technology, business & entertainment
- Documents are represented as a vector of numbers (between 0.0 & 1.0) indicating how much of each topic it has
- Document similarity is measured by the cosign similarity of their vectors

### **Document-term matrix**

- Given collection of documents, find all the unique words in them
  - Eliminate common stopwords (e.g., the, and, a) that carry little meaning and very infrequent words
- Represent each word as an integer and construct document-term matrix
- Cell values are term frequency (tf), number of times word occurs
- Alternatively: use tf-idf to give documents less weight to very common words

10,000 words

|    | W1 | W2 | W3 | <u>Wn</u> |
|----|----|----|----|-----------|
| D1 | 0  | 2  | 1  | 3         |
| D2 | 1  | 4  | 0  | 0         |
| D3 | 0  | 2  | 3  | 1         |
| Dα | 1  | 1  | 3  | 0         |

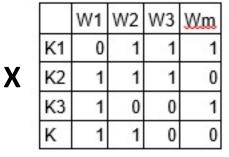
1000

# **Dimensionality reduction**

- A dimensionality-reduction algorithm converts this matrix into the product of two smaller matrices
  - Documents to topics and topics to words
- Document represented as a vector of topics
- Understand what K<sub>3</sub> is about by looking at its words with the highest values
- Documents about topic K<sub>3</sub> are those with high values for K<sub>3</sub>
- Documents similar to D<sub>43</sub> will have similar topic vectors (use cosine similarity)

|    |    | 1410 |    |    |
|----|----|------|----|----|
|    | W1 | W2   | W3 | wn |
| D1 | 0  | 2    | 1  | 3  |
| D2 | 1  | 4    | 0  | 0  |
| D3 | 0  | 2    | 3  | 1  |
| Dn | 1  | 1    | 3  | 0  |

| (3. ) | K1 | K2 | K3 | K |
|-------|----|----|----|---|
| D1    | 1  | 0  | 0  | 1 |
| D2    | 1  | 1  | 0  | 0 |
| D3    | 1  | 0  | 0  | 1 |
| Dn    | 1  | 0  | 1  | 0 |



n documents x k topics

k topics x m words

n documents x m words

# Topic modeling with sklearn

See and try the notebooks and data in this github repo

| data                       | 8 minutes ago |
|----------------------------|---------------|
| NMFtm.ipynb                | 8 minutes ago |
| README.md                  | 8 minutes ago |
| articles-model-nmf-k10.pkl | 8 minutes ago |
| articles-raw.pkl           | 8 minutes ago |
| articles-tfidf.pkl         | 8 minutes ago |
| preprocessing.ipynb        | 8 minutes ago |
| stopwords.txt              | 8 minutes ago |

# **Dimensionality reduction**

- There are many dimensionality-reduction algorithms with different properties
- They are also used for word embeddings
- General idea: represent a thing (i.e., document, word, node in a graph) as a relatively short (e.g., 100-300) vector of numbers between 0.0 and 1.0
- Some information lost, but the size is manageable

# **Topic Modeling Summary**

- Topic Modeling is an efficient way for identifying latent topics in a collection of documents
- The topics found are ones that are specific to the collection, which might be social media posts, medical journal articles or cybersecurity alerts
- It can be used to find documents on a topic, for document similarity metrics and other applications