Machine Learning: Methodology
Chapter 19
ML is an experimental science

• Most ML work has an engineering or experimental flavor
 – it’s being used as a tool to solve a problem

• Methodology is important

• As are approaches for evaluating results

• Common to try multiple ML methods, features, and parameters for a problem to find what works best

• Google’s Rules of Machine Learning has more information
Many moving parts

Solving a problem with machine learning involves many decisions

• Selecting training data and deciding how much is needed
• Preprocessing the data, creating new features from it
• Selecting a machine learning algorithm
• Choosing its parameters
• Deciding on a metric to optimize
• Running evaluation experiments
Approaches

• Different classes of ML algorithms have different kinds of evaluation techniques
 – Some are common to most, however

• **Supervised ML**
 – We can use our data with the right answers

• Unsupervised ML
 – Some general metrics exist (e.g., for clusters)
 – May need human assessments

• Reinforcement learning
 – Problem determines good/bad outcomes (e.g., points won in a game)
animal name: string
hair: Boolean
feathers: Boolean
eggs: Boolean
milk: Boolean
airborne: Boolean
aquatic: Boolean
predator: Boolean
toothed: Boolean
backbone: Boolean
breathes: Boolean
venomous: Boolean
fins: Boolean
legs: \{0,2,4,5,6,8\}
tail: Boolean
domestic: Boolean
catsize: Boolean
type: \{mammal, fish, bird, shellfish, insect, reptile, amphibian\}

Zoo data

101 examples

<table>
<thead>
<tr>
<th>Animal</th>
<th>hair</th>
<th>feathers</th>
<th>eggs</th>
<th>milk</th>
<th>airborne</th>
<th>aquatic</th>
<th>predator</th>
<th>toothed</th>
<th>backbone</th>
<th>breathes</th>
<th>venomous</th>
<th>fins</th>
<th>legs</th>
<th>tail</th>
<th>domestic</th>
<th>catsize</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>aardvark</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>mammal</td>
</tr>
<tr>
<td>antelope</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>mammal</td>
</tr>
<tr>
<td>bass</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>fish</td>
</tr>
<tr>
<td>bear</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>mammal</td>
</tr>
<tr>
<td>boar</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>mammal</td>
</tr>
<tr>
<td>buffalo</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>mammal</td>
</tr>
<tr>
<td>calf</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>mammal</td>
</tr>
<tr>
<td>carp</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>fish</td>
</tr>
<tr>
<td>catfish</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>fish</td>
</tr>
<tr>
<td>cavy</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>mammal</td>
</tr>
<tr>
<td>cheetah</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>mammal</td>
</tr>
<tr>
<td>chicken</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>bird</td>
</tr>
<tr>
<td>chub</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>fish</td>
</tr>
<tr>
<td>clam</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>shellfish</td>
</tr>
<tr>
<td>crab</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>shellfish</td>
</tr>
</tbody>
</table>

...
Zoo example

aima-python> python
>>> from learning import *
>>> zoo
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,0,0,1,0,1,0,0,0,0])
'fish'
>>> dt.predict(['shark',0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])
'mammal'
Evaluation methodology (1)

Standard methodology:

1. Collect large set of examples with correct classifications (aka ground truth data)
2. Randomly divide collection into two disjoint sets: training & test (e.g., via a 90-10% split)
3. Train a model using your algorithm on the training set giving hypothesis H
4. Measure performance of the model (and H) on the held-out test set
Accuracy: a simple metric

• What measure of performance can we use?
• It depends on the kind of task, e.g.,
 – Classification (e.g., which species of iris)
 – Information retrieval (find relevant documents)
• One of the simplest is **accuracy**
 – Fraction of the answers that were correct
• It doesn’t weigh different kinds of errors differently (e.g., false positive vs false negatives)
Evaluation methodology (2)

• Important: keep training and test sets disjoint!

• Study efficiency & robustness of algorithm: repeat steps 2-4 for different training sets & training set sizes

• On modifying algorithm or its parameters, restart with step 1 to avoid evolving algorithm to work well on just this collection
Better evaluation methodology

Common variation on methodology:
1. Collect set of examples with correct classifications
2. Randomly divide it into two disjoint sets: *development* & *test*; further divide development into *devtrain* & *devtest*
3. Apply ML to *devtrain*, giving hypothesis H
4. Measure performance of H w.r.t. *devtest* data
5. Modify approach, repeat 3-4 as needed
6. Final test on *test* data
Evaluation methodology (4)

1. Collect set of examples with correct classifications
2. Randomly divide it into two disjoint sets: development & test
3. Further divide development into devtrain & devtest
4. Apply ML to devtrain, giving hypothesis H
5. Measure performance of H w.r.t. devtest data
6. Modify approach, repeat 3-4 as needed
7. Final test on test data

- Only devtest data used for evaluation during system development
- When all development has ended, test data used for final evaluation
- Ensures final system not influenced by test data
- If more development needed, get new dataset!
Zoo evaluation

train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train

• Hold out 10 data items for test; train on the other 91; show the accuracy on the test data
• Doing this four times for different test subsets shows accuracy from 80% to 100%
• What’s the true accuracy of our approach?
Zoo evaluation

\texttt{train_and_test(learner, data, start, end)} uses \texttt{data[start:end]} for test and rest for train

\begin{verbatim}
>>> dtl = DecisionTreeLearner
>>> train_and_test(dtl(), zoo, 0, 10)
1.0
>>> train_and_test(dtl(), zoo, 90, 100)
0.80000000000000004
>>> train_and_test(dtl(), zoo, 90, 101)
0.81818181818181823
>>> train_and_test(dtl(), zoo, 80, 90)
0.90000000000000002
\end{verbatim}

\textit{We might use the average accuracy of the experiments as the overall metric, in this case 0.9}
K-fold Cross Validation

• **Problem:** getting *ground truth* data expensive
• **Problem:** need different test data for each test
• **Problem:** experiments needed to find right *feature space* & parameters for ML algorithms
• **Goal:** minimize training+test data needed
• **Idea:** split training data into K subsets; use K-1 for *training* and one for *development testing*
• Repeat K times and average performance
• Common K values are 5 and 10
N-fold Cross Validation

• AIMA code has a cross_validation function that runs K-fold cross validation

• `cross_validation(learner, data, K, N)` does N iterations, each time randomly selecting 1/K data points for test, leaving rest for train

 >>> `cross_validation(dtl(), zoo, 10, 20)`
 0.95500000000000007

• Very common approach to evaluating model accuracy during development

• Best practice: hold out a final test data set
Leave one out validation

- AIMA code also has a `leave1out` function that runs experiments to estimate model accuracy
- `leave1out(learner, data)` does `len(data)` trials, each using **one element for test**, rest for train
  ```python
  >>> leave1out(dtl(), zoo)
  0.97029702970297027
  ```
- K-fold cross validation can be *too pessimistic*, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative
Fast and slow learners

- Some approaches require less training data to reach a given performance level than others
- We can think of them as faster learners
- Differences can be due to data preprocessing, algorithm choice, and/or parameter settings
- Faster is generally better for many reasons (e.g., may want to apply it to many huge datasets)
- Learning curves give an intuitive way to assess
A **learning curve** shows accuracy on test set as a function of training set size or (for neural networks) running time.
Learning curve

• When evaluating ML algorithms, steeper learning curves are better

• Represent faster learning with less data

System with the red curve is better since it requires less data to achieve a given accuracy
Neural network learning curves

For neural networks, the **x axis** is usually the **number of iterations** of the training algorithm.

![Learning curve diagram]

System with the red curve is better since it requires less data to achieve a given accuracy.
Iris Data Set

Download: Data Folder, Data Set Description

Abstract: Famous database; from Fisher, 1936

Data Set Characteristics: Multivariate
Number of Instances: 150
Area: Life

Attribute Characteristics: Real
Number of Attributes: 4
Date Donated: 1988-07-01

Associated Tasks: Classification
Missing Values?: No
Number of Web Hits: 386237

Source:
Iris Data

• Three classes: Iris Setosa, Iris Versicolour, Iris Virginica

• Four features: sepal length and width, petal length and width

• 150 data elements (50 of each)

aima-python> more data/iris.csv
5.1,3.5,1.4,0.2,setosa
4.9,3.0,1.4,0.2,setosa
4.7,3.2,1.3,0.2,setosa
4.6,3.1,1.5,0.2,setosa
5.0,3.6,1.4,0.2,setosa

http://code.google.com/p/aima-data/source/browse/trunk/iris.csv
Comparing ML Approaches

- Effectiveness of ML algorithms varies depending on problem, data, and features used
- You may have intuitions, but run experiments
- Average accuracy (% correct) is a standard metric

```python
>>> compare([DecisionTreeLearner, NaiveBayesLearner, NearestNeighborLearner], datasets=[iris, zoo], k=10, trials=5)
iris   zoo
DecisionTree  0.86  0.94
NaiveBayes    0.92  0.92
NearestNeighbor 0.85  0.96
```
Confusion Matrix (1)

- A confusion matrix can be a better way to show results for many problems.
- For binary classifiers it’s simple and related to type I and type II errors (i.e., false positives and false negatives).
- We may have different costs for each error.
- So, we must understand their frequencies.

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>(C)</td>
<td>True positive</td>
</tr>
<tr>
<td>(\sim C)</td>
<td>(\sim C)</td>
<td>False negative</td>
</tr>
</tbody>
</table>

Type I

Type II
Confusion Matrix (2)

• For multi-way classifiers, a confusion matrix is even more useful

• It lets you focus in on where the errors are

<table>
<thead>
<tr>
<th></th>
<th>Cat</th>
<th>Dog</th>
<th>Rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Dog</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Rabbit</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

• This result suggests a system finds it easy to confuse dogs and cats
Accuracy, Error Rate, Sensitivity, Specificity

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>¬C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>TP</td>
<td>FP</td>
<td>P’</td>
</tr>
<tr>
<td>¬C</td>
<td>FN</td>
<td>TN</td>
<td>N’</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>N</td>
<td>All</td>
</tr>
</tbody>
</table>

- **Classifier Accuracy**, or recognition rate: percentage of test set tuples are correctly classified
 \[
 \text{Accuracy} = \frac{(TP + TN)}{\text{All}}
 \]

- **Error rate**: \(1 - \text{accuracy}\), or
 \[
 \text{Error rate} = \frac{(FP + FN)}{\text{All}}
 \]

Class Imbalance Problem:

- One class may be *rare*, e.g. fraud, HIV-positive, ebola
- Significant *majority in negative class* & rest in positive class
- **Sensitivity**: True Positive recognition rate
 \[
 \text{Sensitivity} = \frac{TP}{TP + FN}
 \]
- **Specificity**: True Negative recognition rate
 \[
 \text{Specificity} = \frac{TN}{TN + FP}
 \]
On Sensitivity and Specificity

• **High sensitivity:** few false negatives

 sensitivity=1 => TP=P => you correctly identify all positives, but may include many negatives

• **High specificity:** few false positives

 specificity=1 => TN=N => you correctly identify all negatives but may include many positives

• **TSA security scenario:**
 Scanners set for *high sensitivity* & low specificity (e.g., trigger on keys) reducing risk of missing dangerous objects

• **Web search scenario:**
 Set for *high specificity* so first page has nearly all relevant documents
COVID-19 Sensitivity & Specificity

• COVID-19: test sensitivity and specificity both 0.99 (i.e., 99% accuracy)
• Assume 1% of population infected (pos)
• Test 10,000 people where 100 pos, 9900 neg
 – 99 + 99 will test positive (half right, half wrong)
 – 01 + 9801 will test negative (virtually all correct)
• Dr. Birx, April 2020: “I want to be very clear to the American people, none of our tests are 100% sensitive and specific. What do I mean by that? None of our tests that we use in medicine and diagnose 100% of the people who are positive, and correctly diagnose 100% of the people who are negative"
Precision and Recall

Information retrieval uses similar measures, \texttt{precision} \& \texttt{recall}, to characterize retrieval effectiveness.

- **Precision**: \% of items classifier labels as positive that are actually positive.
- **Recall**: \% of positive items classifier labels as positive.

\[
\text{precision} = \frac{TP}{TP + FP}
\]

\[
\text{recall} = \frac{TP}{TP + FN}
\]
Precision and Recall

- In general, increasing one causes other to decrease
- Get recall=1 by marking every item as positive
- Get highest precision by marking only one item positive, the one you’re most certain of
- We usually want some balance of precision and recall
- Studying the precision-recall curve is informative
Precision and Recall

If one system’s curve is always above the other, it’s better.
F1 measure

• We often want just one measure to compare two systems to decide which is best overall
• F1 measure combines both into a useful single metric
• It’s the harmonic mean of precision & recall

\[H = \frac{2x_1 x_2}{x_1 + x_2} \]

\[F = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \]
Grid search

- ML algorithms tend to have many parameters
- How can we effectively find the best setting for all of them?
- A grid search takes a list of possible values for each of a set of parameters
- ...and tests each combination, to get a metric (e.g., accuracy, F1)
- See this scikit learn colab example
Precision at N

• Ranking tasks return a set of results ordered from best to worst
 – E.g., documents about “barack obama”
 – Best knowledge graph type for “Barack Obama”

• **Learning to rank** systems do this using a variety of algorithms (including SVM)

• **Precision at K** is the fraction of top K answers that are correct
Model evaluation in scikit learn

scikit.metrics is an evaluation module that supports most of its models in a fairly uniform way.

3.3. Metrics and scoring: quantifying the quality of predictions

There are 3 different APIs for evaluating the quality of a model's predictions:

- **Estimator score method:** Estimators have a `score` method providing a default evaluation criterion for the problem they are designed to solve. This is not discussed on this page, but in each estimator’s documentation.

- **Scoring parameter:** Model-evaluation tools using cross-validation (such as `model_selection.cross_val_score` and `model_selection.GridSearchCV`) rely on an internal `scoring` strategy. This is discussed in the section *The scoring parameter: defining model evaluation rules.*

- **Metric functions:** The `sklearn.metrics` module implements functions assessing prediction error for specific purposes. These metrics are detailed in sections on Classification metrics, Multi-label ranking metrics, Regression metrics and Clustering metrics.

Finally, Dummy estimators are useful to get a baseline value of those metrics for random predictions.

See also: For “pairwise” metrics, between `samples` and not estimators or predictions, see the Pairwise metrics, Affinities and Kernels section.

3.3.1. The scoring parameter: defining model evaluation rules

Model selection and evaluation using tools, such as `model_selection.GridSearchCV` and `model_selection.cross_val_score`, take a `scoring` parameter that controls what metric they apply to the estimators evaluated.

3.3.1.1. Common cases: predefined values

For the most common use cases, you can designate a scorer object with the `scoring` parameter; the table below shows all possible values. All scorer objects follow the convention that higher return values are better than lower return values.
Model evaluation in scikit learn

• The `scikit.metrics` evaluation module supports most of its models in a uniform way

• It has functions that make it easy to
 – Split the data into train and test subsets
 – Do cross validation
 – Get various metrics
 – Do a grid search for a set of parameters and their possible values

• See our colab notebooks for examples
Summary

• Evaluating the results of a ML system is very important!

• Part of the development process to decide
 – What parameters maximize performance?
 – Is one system better?
 – Do we need more data?
 – etc.

• Many ML algorithms have specialized evaluation techniques

• There is a lot more to the topic