

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz,, Chuck Dyer, and Mary Getoor

9.4.3

Resolution

- Resolution is a **sound** and **complete** inference procedure for unrestricted FOL
- Reminder: Resolution rule for propositional logic:
 - $-P_{1} \lor P_{2} \lor \ldots \lor P_{n}$ $-\neg P_{1} \lor Q_{2} \lor \ldots \lor Q_{m}$ $-\text{Resolvent: } P_{2} \lor \ldots \lor P_{n} \lor Q_{2} \lor \ldots \lor Q_{m}$
- We'll need to extend this to handle quantifiers and variables

Two Common Normal Forms for a KB

Р

 $\sim P \lor \sim Q \lor R$

Implicative normal form

• Set of sentences expressed as implications where left hand sides are conjunctions of 0 or more literals

Р

 $P \land O => R$

Conjunctive normal form

 Set of sentences expressed as disjunctions literals

- Recall: literal is an atomic expression or its negation e.g., loves(john, X), ~ hates(mary, john)
- Any KB of sentences can be expressed in either form

Resolution covers many cases

- Modes Ponens
 - $-from P and P \rightarrow Q \quad derive Q$
 - -from P and \neg P \lor Q derive Q
- Chaining
 - $-\text{from } P \to Q \text{ and } Q \to R \qquad \text{derive } P \to R$
 - -from ($\neg P \lor Q$) and ($\neg Q \lor R$) derive $\neg P \lor R$
- Contradiction detection
 - -from P and \neg P derive false
 - -from P and \neg P derive the empty clause (= false)

Resolution in first-order logic

- Given sentences in *conjunctive normal form*:
 - $\ P_1 \lor ... \lor P_n \ \text{ and } \ Q_1 \lor ... \lor Q_m$
 - $-P_i$ and Q_i are literals, i.e., positive or negated predicate symbol with its terms
- if P_j and ¬Q_k unify with substitution list θ, then derive the resolvent sentence:
 subst(θ, P₁∨...∨P_{j-1}∨P_{j+1}...P_n∨ Q₁∨...Q_{k-1}∨Q_{k+1}∨...∨Q_m)
- Example
 - from clause $P(x, f(a)) \vee P(x, f(y)) \vee Q(y)$
 - and clause $\neg P(z, f(a)) \lor \neg Q(z)$
 - derive resolvent $P(z, f(y)) \lor Q(y) \lor \neg Q(z)$
 - -Using $\theta = \{x/z\}$

A resolution proof tree

A resolution proof tree

Resolution refutation (1)

- Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q
- Proof by contradiction: Add ¬Q to KB and try to prove false, i.e.:
 (KB |- Q) ↔ (KB ∧ ¬Q |- False)

Resolution refutation (2)

- Resolution is **refutation complete:** can show sentence Q is entailed by KB, but can't always generate all consequences of a set of sentences
- Can't prove Q is **not entailed** by KB
- Resolution **won't always give an answer** since entailment is only semi-decidable
 - -And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg Q$, since KB might not entail either one

Resolution example

- KB:
 - $allergies(X) \rightarrow sneeze(X)$
 - $\operatorname{cat}(Y) \land \operatorname{allergicToCats}(X) \rightarrow \operatorname{allergies}(X)$
 - cat(felix)
 - allergicToCats(mary)
- Goal:
 - sneeze(mary)

Refutation resolution proof tree

Some tasks to be done

- Convert FOL sentences to conjunctive normal form (aka CNF, clause form): normalization and skolemization
- Unify two argument lists, i.e., how to find their most general unifier (**mgu**) q: **unification**
- Determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) : resolution (search) strategy