
Logical
Inference

Rule-based reasoning
Chapter 9

Some material adopted from notes by Andreas
Geyer-Schulz,, Chuck Dyer, and Mary Getoor

9.4.2

Automated inference for FOL
•Automated inference for FOL is harder than PL

– Variables can take on an infinite number of possible
values from their domains

– Hence there are potentially an infinite number of
ways to apply the Universal Elimination rule

•Godel's Completeness Theorem says that FOL
entailment is only semi-decidable
– If a sentence is true given a set of axioms, there is a

procedure that will determine this
– If a sentence is false, there’s no guarantee a

procedure will ever discover this — it may never halt

Generalized Modus Ponens (GMP)
•Modus Ponens: P, P=>Q |= Q
•Generalized Modus Ponens extends this to

rules in FOL
•Combines And-Introduction, Universal-

Elimination, and Modus Ponens, e.g.
– given P(c) , Q(c) , "x P(x)ÙQ(x) ® R(x)
– derive R(c)

•Must deal with
–more than one condition on rule’s left side
–variables

Often rules restricted to Horn clauses
•A Horn clause is a sentence of the form:

P1(x) Ù P2(x) Ù ... Ù Pn(x) ® Q(x)
where

– ≥ 0 Pis and 0 or 1 Q
– Pis and Q are positive (i.e., non-negated) literals

•Equivalently: P1(x) Ú P2(x) … Ú Pn(x) where Pi
are all atomic and at most one is positive

•Prolog is based on Horn clauses
•Horn clauses are a subset of all sentences

representable in FOL

https://en.wikipedia.org/wiki/Horn_clause

Horn clauses 2
•Special cases

– Typical rule: P1 Ù P2 Ù … Pn® Q
– Constraint: P1 Ù P2 Ù … Pn® false
– A fact: ® Q
– A goal: Q ®

•These are not Horn clauses:
– married(x, y) ® loves(x, y) Ú hates(x, y)
– ¬likes(john, mary)
– ¬likes(x, y) ® hates(x, y)

•Can’t assert/conclude disjunctions, no negation
•No wonder reasoning over Horn clauses is easier

Horn clauses 3
•Where are the quantifiers?
– Variables in conclusion universally quantified
– Variables only appearing in premises existentially quantified

•Examples:
– parentOf(P,C) ® childOf(C,P)
"P "C parentOf(P,C) ® childOf(C,P)

– parentOf(P,X) ® isParent(P)
"P $X parent(P,X) ® isParent(P)

– parent(P1, X) Ù parent(X, P2) ® grandParent(P1, P2)
"P1,P2 $X parent(P1,X) Ù parent(X, P2)

® grandParent(P1, P2)

Definite Clauses

•A definite clause is a horn clause with a
conclusion

•What’s not allowed is a horn clause w/o a
conclusion, e.g.
– male(x), female(x) ®
– i.e., male(x) Ú female(x)

•Most rule-based reasoning systems, like
Prolog, allow only definite clauses in the KB

Forward & Backward Reasoning

•We often talk about two reasoning
strategies:
– Forward chaining and
– Backward chaining

•Both are equally powerful, but optimized
for different use cases

•You can also have a mixed strategy

Forward chaining

•Proofs start with given axioms/premises in KB,
deriving new sentences using GMP until the
goal/query sentence is derived
– The process follows a chain of rules and facts going

from the KB to the conclusion

•This defines a forward-chaining inference
procedure because it moves “forward” from
the KB to the goal [eventually]

•Inference using GMP is sound and complete for
KBs containing only Horn clauses

http://en.wikipedia.org/wiki/Forward_chaining

Forward chaining example

• KB:
– allergies(X) ® sneeze(X)
– cat(Y) Ù allergicToCats(X) ® allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)

Backward chaining
• Backward-chaining deduction using GMP is also

complete for KBs containing only Horn clauses
• Proofs start with the goal query, find rules with

that conclusion, and then tries to prove each of
the antecedents in the rule

• Keep going until you reach premises
• Avoid loops by checking if new subgoal is already

on the goal stack
• Avoid repeated work: use a cache to check if new

subgoal already proved true or failed

http://en.wikipedia.org/wiki/Backward_chaining

Backward chaining example

• KB:
– allergies(X) ® sneeze(X)
– cat(Y) Ù allergicToCats(X) ® allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)

Forward vs. backward chaining
•Forward chaining is data-driven

– Automatic, unconscious processing, e.g., object
recognition, routine decisions

– May do lots of work that is irrelevant to the goal
– Efficient when you want to compute all conclusions

•Backward chaining is goal-driven, better for
problem-solving and query answering
– Where are my keys? How do I get to my next class?
– Complexity can be much less than linear w.r.t KB

size
– Efficient when you want one or a few decisions
– Good where the underlying facts are changing

Mixed strategy
• Many practical reasoning systems do both forward

and backward chaining
• The way you encode a rule determines how it is

used, as in
% this is a forward chaining rule
spouse(X,Y) => spouse(Y,X).
% this is a backward chaining rule
wife(X,Y) <= spouse(X,Y), female(X).

• Given a model of the rules you have and the kind
of reason you need to do, it’s possible to decide
which to encode as FC and which as BC rules.

Completeness of GMP

• GMP (using forward or backward chaining) is
complete for KBs that contain only Horn clauses

• not complete for simple KBs with non-Horn clauses

• What is entailed by the following sentences:

1. ("x) P(x) ® Q(x)
2. ("x) ¬P(x) ® R(x)
3. ("x) Q(x) ® S(x)
4. ("x) R(x) ® S(x)

Completeness of GMP

• The following entail that S(A) is true:
1. ("x) P(x) ® Q(x)
2. ("x) ¬P(x) ® R(x)
3. ("x) Q(x) ® S(x)
4. ("x) R(x) ® S(x)

• If we want to conclude S(A), with GMP we cannot,
since the second one is not a Horn clause

• It is equivalent to P(x) Ú R(x)

