
P8.py

8 puzzle in python
• Look at a simple implementation of eight

puzzle in python
• p8.py
• Solve using A* with three different heuristics
–NIL: h = 1
–OOP: h = # of tiles out of place
–MHD: h = sum of manhatten distance

between each tile’s current & goal positions
• All three are admissible

http://www.csee.umbc.edu/courses/graduate/671/fall12/code/python/p8.py

What must we model?

• A state
• Goal test
• Actions
• Result of doing action in state
• Heuristic function

A State

• Represent state as string of
nine characters with blank as *

• E.g.: “1234*5678”
• Position of blank in state S is
S.index(‘*’)

1 2 3
4 * 5
6 7 8

Legal Actions
def actions8(S): # returns list of legal actions in state S

action_table = {
0:['down', 'right'],
1:['down', 'left', 'right'],
2:['down', 'left'],
3:['up', 'down', 'right'],
4:['up', 'down', 'left', 'right'],
5:['up', 'down', 'left'],
6:['up', 'right'],
7:['up', 'left', 'right'],
8:['up', 'left'] }

return action_table[S.index('*')]

0 1 2
3 4 5
6 7 8

Function maps a
position to a list
of possible moves
for a tile in that
position

Result of action A on state S
def result8(S, A):

blank = S.index('*') # blank position
if A == 'up':

swap = blank - 3
return S[0:swap] + '*' + S[swap+1:blank] + S[swap] + S[blank+1:]

elif A == 'down':
swap = blank + 3
return S[0:blank] + S[swap] + S[blank+1:swap] + '*' + S[swap+1:]

elif A == 'left':
swap = blank - 1
return S[0:swap] + '*' + S[swap] + S[blank+1:]

elif A == 'right':
swap = blank + 1
return S[0:blank] + S[swap] + '*' + S[swap+1:]

raise ValueError('Unrecognized action: ' + A)

Heuristic function
class P8_h1(P8):

""" Eight puzzle using a heuristic function that counts number
of tiles out of place"””
name = 'Out of Place Heuristic (OOP)’

def h(self, node):
"""8 puzzle heuristic: number of tiles 'out of place'
between a node's state and the goal"""
mismatches = 0
for (t1, t2) in zip(node.state, self.goal):

if t1 != t2: mismatches =+ 1
return mismatches

Path_cost method

Since path cost is just the number of steps, we
can use the default version define in Problem

def path_cost(self, c, state1, action, state2):
"""Return cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""

return c + 1

Example
python> python p8.py 10

Problems using 10 random steps from goal

Using No Heuristic (NIL) from *32415678 to *12345678
72 states, 27 successors, 40 goal tests, 0.002507 sec
Solution of length 5

Using Out of Place Heuristic (OOP) from *32415678 to *12345678
32 states, 11 successors, 17 goal tests, 0.001228 sec
Solution of length 5

Using Manhattan Distance Heuristic (MHD) from *32415678 to *12345678
48 states, 16 successors, 24 goal tests, 0.002736 sec
Solution of length 5

Example
>> Python p8.py 50
Problems using 50 random steps from goal
*61724358 => *12345678 using No Heuristic
Solution length 19
52656 states, 19120 successors, 19122 goal tests (262.9092 sec)

*61724358 => *12345678 using Out of Place Heuristic
Solution length 19
32942 states, 12306 successors, 12308 goal tests (96.4233 sec)

*61724358 => *12345678 using Manhattan Distance Heuristic
Solution length 19
34412 states, 12633 successors, 12635 goal tests (100.9926 sec)

