
Neural Networks for
Machine Learning

introduction

Biological
neural
activity

Neurons have body, axon and many dendrites
•In one of two states: firing and rest
•They fire if total incoming stimulus > threshold

Synapse: thin gap between axon of one neuron
and dendrite of another

•Signal exchange

https://en.wikipedia.org/wiki/Neuron

Artificial neural network

• Set of nodes with inputs and outputs
Node performs computation via its activation
function
• Weighted connections between nodes
• Connectivity gives network architecture
• NN computations depend on connections & weights

Common Ac(va(on Func(ons

Choice of activation function depends on
problem and available computational power

Single Layer Perceptron

•Full 1958 NYT arDcle above here
•RosenblaF: it can learn to compute

funcDons by learning weights on
inputs from examples

•Not all funcDons ☹, cf. Perceptrons

https://en.wikipedia.org/wiki/Perceptron
https://www.csee.umbc.edu/courses/undergraduate/471/spring18/01/resources/MBC-Rosenblatt-Perceptron-NYT-article.jpg.pdf
https://en.wikipedia.org/wiki/Perceptrons_(book)

A man adjusting the random
wiring network between the
light sensors and association
unit of scientist Frank
Rosenblatt's Perceptron, or
MARK 1 computer, at the
Cornell Aeronautical
Laboratory, Buffalo, New
York, circa 1960. The
machine is designed to use
a type of artificial neural
network, known as a
perceptron. (Photo by
Frederic Lewis/Archive
Photos/Getty Images)

6

MLP:
Multilayer

Perceptron

• ≥ 1 “hidden layers” between inputs & output
• Can compute non-linear functions
• Training: adjust weights slightly to reduce error

between output y and target value t; repeat
• Introduced in 1980s, still used today

https://en.wikipedia.org/wiki/Multilayer_perceptron

Backpropaga:on

Calculate network and error

Forward direction

Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986).
Learning representations by back-propagating errors. Nature. 323 (6088): 533–536.

https://en.wikipedia.org/wiki/Backpropagation
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

Backpropagation

Backpropagate: from output to input, recursively
compute and adjust weights𝜕𝐸

𝜕𝑤!"
= 𝛁#𝐸

Backward direction

https://en.wikipedia.org/wiki/Backpropagation

Neural Network Architectures

Current focus on large networks with
different “architectures” suited for different
kinds of tasks
•Feedforward Neural Network
•CNN: Convolutional Neural Network
•RNN: Recurrent Neural Network
•LSTM: Long Short Term Memory
•GAN: Generative Adversarial Network

•Connections allowed from a node in layer i
only to nodes in layer i+1
i.e., no cycles or loops

•Simple, widely used architecture.

downstream nodes
tend to successively
abstract features from
preceding layers

Feedforward Neural Network

HTTP://PLAYGROUND.TENSORFLOW.ORG/

https://en.wikipedia.org/wiki/Feedforward_neural_network

HTTP://PLAYGROUND.TENSORFLOW.ORG/

http://playground.tensorflow.org/

CNN: Convolutional Neural Network

• Good for image processing: classifica<on, object recogni<on,
automobile lane tracking, etc.

• Classic demo: learn to recognize hand-wriDen digits from
MNIST data with 70K examples

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/MNIST_database

RNN: Recurrent Neural Networks
• Good for learning over sequences of data,

e.g., a sentence orf words
• LSTM (Long Short Term Memory) a popular

architecture

gif from Adam Geitgey

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

Deep Learning Frameworks

•Popular open source deep learning frame-
works use Python at top-level; C++ in backend
–TensorFlow (via Google)
–PyTorch (via Facebook)
–MxNet (Apache)
–Caffe (Berkeley)

•Keras: popular API works with the first two and
provides good support at architecture level

https://www.tensorflow.org/
https://pytorch.org/
https://en.wikipedia.org/wiki/Apache_MXNet
https://en.wikipedia.org/wiki/Caffe_(software)
https://keras.io/

Good at Transfer Learning

•Neural networks effective for transfer learning
Using parts of a model trained on a task as an initial
model to train on a different task

•Particularly effective for image recognition

17

https://en.wikipedia.org/wiki/Transfer_learning

Good at Transfer Learning
•For images, the initial stages of a model learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

18source:http://ruder.io/transfer-learning/

http://ruder.io/transfer-learning/

Fine Tuning a NN Model

•Special kind of transfer learning
– Start with a pre-trained model
– Replace last output layer with a new one
– Fix all but last layer by marking as trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task to classify pix of 15 common

pets
19

Conclusions

•Quick introduction to neural networks and
deep learning

•Learn more by
– Take UMBC’s CMSC 478 machine learning class
– Try scikit-learn’s neural network models
– Explore Google’s Machine Learning Crash Course
– Try Miner/Kasch tutorial on applied deep learning
– Work through examples

•and then try your own project idea

https://catalog.umbc.edu/preview_course_nopop.php%3Fcatoid=15&coid=44919
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://developers.google.com/machine-learning/crash-course/
https://github.com/MinerKasch/applied_deep_learning

