Neural Networks for Machine Learning introduction

Neurons have body, axon and many dendrites

- •In one of two states: firing and rest
- They fire if total incoming stimulus > threshold

Synapse: thin gap between axon of one neuron and dendrite of another

•Signal exchange

- Set of nodes with inputs and outputs
 Node performs computation via its activation function
- Weighted connections between nodes
- Connectivity gives network architecture
- NN computations depend on connections & weights

Common Activation Functions

Choice of activation function depends on problem and available computational power

Single Layer <u>Perceptron</u>

Ø

SPECIAL TO THE NEW YORK TIMES JULY 8, 1958

WASHINGTON, July 7 (UPI) -- The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

- Full 1958 NYT article above here
- Rosenblatt: it can learn to compute functions by learning weights on inputs from examples
- Not all functions \cong , cf. <u>Perceptrons</u>

A man adjusting the random wiring network between the light sensors and association unit of scientist Frank Rosenblatt's Perceptron, or MARK 1 computer, at the **Cornell Aeronautical** Laboratory, Buffalo, New York, circa 1960. The machine is designed to use a type of artificial neural network, known as a perceptron. (Photo by Frederic Lewis/Archive Photos/Getty Images)

- ≥ 1 "hidden layers" between inputs & output
- Can compute non-linear functions
- Training: adjust weights slightly to reduce error between output y and target value t; repeat
- Introduced in 1980s, still used today

Backpropagation

Calculate network and error

Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). Learning representations by back-propagating errors. Nature. 323 (6088): 533–536.

Backpropagation

Backpropagate: from output to input, recursively compute $\frac{\partial E}{\partial w_{ij}} = \nabla_w E$ and adjust weights

Neural Network Architectures

Current focus on large networks with different "architectures" suited for different kinds of tasks

- Feedforward Neural Network
- CNN: Convolutional Neural Network
- RNN: Recurrent Neural Network
- LSTM: Long Short Term Memory
- GAN: Generative Adversarial Network

Feedforward Neural Network

- Connections allowed from a node in layer i only to nodes in layer i+1
 - i.e., no cycles or loops
- Simple, widely used architecture.

C ==

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

CNN: Convolutional Neural Network

- Good for image processing: classification, object recognition, automobile lane tracking, etc.
- Classic demo: learn to recognize hand-written digits from <u>MNIST</u> data with 70K examples

RNN: Recurrent Neural Networks

- Good for learning over sequences of data, e.g., a sentence orf words
- LSTM (Long Short Term Memory) a popular architecture

Deep Learning Frameworks

- Popular open source deep learning frameworks use Python at top-level; C++ in backend
 - -TensorFlow (via Google)
 - -<u>PyTorch</u> (via Facebook)
 - –<u>MxNet</u> (Apache)
 - -Caffe (Berkeley)
- <u>Keras</u>: popular API works with the first two and provides good support at architecture level

Good at Transfer Learning

Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to train on a different task

Particularly effective for image recognition

TRAINING FROM SCRATCH

Good at Transfer Learning

- For images, the initial stages of a model learn highlevel visual features (lines, edges) from pixels
- Final stages predict task-specific labels

source:<u>http://ruder.io/transfer-learning/</u> 18

Fine Tuning a NN Model

- Special kind of transfer learning
 - Start with a pre-trained model
 - Replace last output layer with a new one
 - Fix all but last layer by marking as trainable:false
- Retraining on new task and data very fast – Only the weights for the last layer are adjusted
- Example
 - Start: NN to classify animal pix with 100s of categories
 - Finetune on new task to classify pix of 15 common pets

Conclusions

- Quick introduction to neural networks and deep learning
- Learn more by
 - Take UMBC's <u>CMSC 478</u> machine learning class
 - -Try scikit-learn's <u>neural network models</u>
 - Explore Google's Machine Learning Crash Course
 - -Try Miner/Kasch tutorial on applied deep learning
 - Work through examples
- and then try your own project idea