Machine Learning: Decision Trees

Chapter 18.1-18.3

Some material adopted from notes by Chuck Dyer
Decision Trees (DTs)

• A **supervised** learning method used for **classification** and **regression**

• Given a set of training tuples, learn model to predict one value from the others
 – Learned value typically a class (e.g., goodRisk)

• Resulting model is simple to understand, interpret, visualize, and apply
Learning a Concept

The red groups are **negative** examples, blue **positive**

Attributes
- **Size**: large, small
- **Color**: red, green, blue
- **Shape**: square, circle

Task
Classify new object with a size, color & shape as positive or negative
Training data

<table>
<thead>
<tr>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>Green</td>
<td>Square</td>
<td>Negative</td>
</tr>
<tr>
<td>Large</td>
<td>Green</td>
<td>Circle</td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td>Green</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Green</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Red</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Red</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Red</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Red</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Blue</td>
<td>Square</td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td>Blue</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Blue</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Blue</td>
<td>Circle</td>
<td>Positive</td>
</tr>
</tbody>
</table>
A decision tree-induced partition

The red groups are negative examples, blue positive

Negative things are big, green shapes and big, blue squares
Learning decision trees

• Goal: Build **decision tree** to classify examples as positive or negative instances of concept using supervised learning from training data

• A **decision tree** is a tree where
 – non-leaf nodes have an attribute (feature)
 – leaf nodes have a classification (+ or -)
 – each arc has a possible value of its attribute

• Generalization: allow for >2 classes
 – e.g., classify stocks as {sell, hold, buy}
Expressiveness of Decision Trees

• Can express any function of input attributes, e.g., for Boolean functions, truth table row \rightarrow path to leaf:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A xor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

• There’s a consistent decision tree for any training set with one path to leaf for each example, but it probably won't generalize to new examples

• Prefer more **compact** decision trees
• Suppose that we want to learn a function \(f(x) = y \) and we’re given sample \((x,y)\) pairs, as in figure (a)
• Can make several hypotheses about \(f \), e.g.: (b), (c) & (d)
• Preference reveals learning technique bias, e.g.:
 – prefer piece-wise functions (b)
 – prefer a smooth function (c)
 – prefer a simple function and treat outliers as noise (d)
Preference bias: Occam’s Razor

• William of Ockham (1285-1347)
 – “non sunt multiplicanda entia praeter necessitatem
 – entities are not to be multiplied beyond necessity

• **Simplest** consistent explanation is the best

• **Smaller** decision trees correctly classifying training examples preferred over larger ones

• Finding **the** smallest decision tree is NP-hard, so we use algorithms that find reasonably small ones
R&N’s restaurant domain

• Develop decision tree that customers make when deciding whether to wait for a table or leave

• **Two classes**: wait, leave

• **Set of 12 training examples**

• ~7000 possible cases
Attribute-based representations

<table>
<thead>
<tr>
<th>Example</th>
<th>Attribute Values</th>
<th>Target Wait</th>
</tr>
</thead>
</table>

- Examples described by **attribute values** (Boolean, discrete, continuous), e.g., situations where I will/won't wait for a table
- **Classification** of examples is **positive** (T) or **negative** (F)
- Serves as a training set
Decision tree from introspection

- Patrons?
 - None
 - Some
 - Full
 - Wait Estimate?
 - >60
 - F
 - 30–60
 - 10–30
 - 0–10
 - Hungry?
 - T
 - Alternate?
 - No
 - Reservation?
 - No
 - Bar?
 - No
 - F
 - Yes
 - T
 - Yes
 - Fri/Sat?
 - No
 - T
 - Yes
 - Alternate?
 - No
 - T
 - Yes
 - Raining?
 - No
 - F
 - Yes
 - T
Issues

• It’s like 20 questions

• We can generate many decision trees depending on what attributes we ask about and in what order

• How do we decide?

• What makes one decision tree better than another: number of nodes? number of leaves? maximum depth?
ID3 / C4.5 / J48 Algorithm

• Greedy algorithm for decision tree construction developed by Ross Quinlan circa 1987

• Top-down construction of tree by recursively selecting best attribute to use at current node
 – Once attribute selected for current node, generate child nodes, one for each possible attribute value
 – Partition examples using values of attribute, & assign these subsets of examples to the child nodes
 – Repeat for each child node until examples associated with a node are all positive or negative
Choosing best attribute

• Key problem: choose attribute to split a given set of examples

• Possibilities for choosing attribute:
 – **Random**: Select one at random
 – **Least-values**: one with smallest # of possible values
 – **Most-values**: one with largest # of possible values
 – **Max-gain**: one with largest expected *information gain*, i.e., gives smallest expected size of subtrees rooted at its children

• The ID3 algorithm uses **max-gain**
Restaurant example

Random: Patrons or Wait-time; **Least-values:** Patrons; **Most-values:** Type; **Max-gain:** ???

<table>
<thead>
<tr>
<th>Type variable</th>
<th>Patrons variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td></td>
</tr>
<tr>
<td>Thai</td>
<td></td>
</tr>
<tr>
<td>Burger</td>
<td></td>
</tr>
<tr>
<td>Empty</td>
<td>Y N</td>
</tr>
<tr>
<td>Some</td>
<td>Y N</td>
</tr>
<tr>
<td>Full</td>
<td>N Y</td>
</tr>
</tbody>
</table>

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ???
Choosing an attribute

Idea: good attribute splits examples into subsets that are (ideally) all positive or all negative

Which is better: *Patrons?* or *Type?*?
Choosing an attribute

Idea: good attribute splits examples into subsets that are (ideally) all positive or all negative

- **Patrons**: for six examples we know the answer and for six we can predict with prob. 0.67
- **Type**: our prediction is no better than chance (0.50)
Splitting examples by testing attributes
ID3-induced decision tree

```
Patrons?
- None: F
- Some: T
- Full:
  - Hungry?
    - Yes: Type?
      - French: T
      - Italian: F
      - Thai:
        - Fri/Sat?:
          - No: F
          - Yes: T
    - No: Burger: T
```
Compare the two Decision Trees
Information theory 101

• Sprang fully formed from Claude Shannon’s seminal work: Mathematical Theory of Communication in 1948

• Intuitions
 – Common words (a, the, dog) shorter than less common ones (parlimentarian, foreshadowing)
 – Morse code: common letters have shorter encodings

• Information inherent in data/message (information entropy) measured in minimum number of bits needed to store/send using a good encoding
Information theory 101

- **Information entropy** ... tells how much information there is in an event. More uncertain an event is, more information it contains.
- Receiving a message is an event.
- How much information is in these messages:
 - The sun rose today!
 - It’s sunny today in Honolulu!
 - The coin toss is heads!
 - It’s sunny today in Seattle!
 - Life discovered on Mars!

 None
 A lot
Information theory 101

• For *n equally probable* possible messages or data values, each has probability $\frac{1}{n}$

• Information of a message is $-\log(p) = \log(n)$

 e.g., with 16 messages, then $\log(16) = 4$ and we need 4 bits to identify/send each message

• For *probability distribution* $P (p_1, p_2, \ldots, p_n)$ for n messages, its information (aka H or *entropy*) is:

 $$I(P) = -(p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n))$$
Entropy of a distribution

$I(P) = -(p_1 \cdot \log(p_1) + p_2 \cdot \log(p_2) + \ldots + p_n \cdot \log(p_n))$

- Examples:
 - If P is $(0.5, 0.5)$ then $I(P) = 0.5 \cdot 1 + 0.5 \cdot 1 = 1$
 - If P is $(0.67, 0.33)$ then $I(P) = -\left(\frac{2}{3} \cdot \log\left(\frac{2}{3}\right) + \frac{1}{3} \cdot \log\left(\frac{1}{3}\right)\right) = 0.92$
 - If P is $(1, 0)$ then $I(P) = 1 \cdot 1 + 0 \cdot \log(0) = 0$

- More uniform probability distribution, greater its information: more information is conveyed by a message telling you which event actually occurred

- Entropy is the average number of bits/message needed to represent a stream of messages
Example: Huffman code

• In 1952, MIT student David Huffman devised (for a homework assignment!) a coding scheme that’s optimal when all data probabilities are powers of 1/2

• A **Huffman code** can be built as followings:
 – Rank symbols in order of probability of occurrence
 – Successively combine 2 symbols of lowest probability to form new symbol; eventually we get binary tree where each node is probability of nodes below
 – Trace path to each leaf, noting direction at each node
Huffman code example

<table>
<thead>
<tr>
<th>M</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.125</td>
</tr>
<tr>
<td>B</td>
<td>.125</td>
</tr>
<tr>
<td>C</td>
<td>.25</td>
</tr>
<tr>
<td>D</td>
<td>.5</td>
</tr>
</tbody>
</table>
Huffman code example

If we use this code to many messages (A,B,C or D) with this probability distribution, then, over time, the average bits/message should approach 1.75.
Information for classification

If set T of records is divided into disjoint exhaustive classes $(C_1, C_2, ..., C_k)$ by value of class attribute, then information needed to identify class of an element of T is:

$$\text{Info}(T) = I(P)$$

where P is the probability distribution of partition $(C_1, C_2, ..., C_k)$:

$$\text{Info}(T) = (|C_1|/|T|, |C_2|/|T|, ..., |C_k|/|T|)$$
Information for classification II

If we further divide T w.r.t. attribute X into sets \{T_1, T_2, .., T_n\}, the information needed to identify class of an element of T is weighted average of information needed to identify class of an element of T_i, i.e., weighted average of Info(T_i):

\[
\text{Info}(X,T) = \sum |T_i|/|T| \times \text{Info}(T_i)
\]
Information gain

- **Gain(X,T) = Info(T) - Info(X,T)** is difference of
 - info needed to identify element of T and
 - info needed to identify element of T after value of attribute X known

- This is gain in information due to attribute X

- Used to rank attributes and build DT where each node uses attribute with greatest gain of those not yet considered in path from root

- **goal**: create small DTs to minimize questions
Should we ask about restaurant type or how many patrons there are?

- \(I(T) = ? \)
- \(I(Pat, T) = ? \)
- \(I(Type, T) = ? \)

Gain (Patrons, T) = ?
Gain (Type, T) = ?

\[
I(P) = -(p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n))
\]
Computing information gain

I(T) =
- \((.5 \log .5 + .5 \log .5) \)
- \(.5 + .5 = 1 \)

I (Pat, T) =
\[
\begin{align*}
2/12 (0) + 4/12 (0) + \\
6/12 (- (4/6 \log 4/6 + 2/6 \log 2/6))
\end{align*}
\]
- \(1/2 (2/3*.6 + 1/3*1.6) \)
- \(.47 \)

I (Type, T) =
\[
\begin{align*}
2/12 (1) + 2/12 (1) + \\
4/12 (1) + 4/12 (1) = 1
\end{align*}
\]

Gain (Patrons, T) = \(1 - .47 = .53 \)

Gain (Type, T) = \(1 - 1 = 0 \)

I(P) = \(-(p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n)) \)
Computing information gain

\[I(T) = \]
\[- (.5 \log .5 + .5 \log .5) \]
\[= .5 + .5 = 1 \]

\[I(Pat, T) = \]
\[\frac{2}{12} (0) + \frac{4}{12} (0) + \]
\[\frac{6}{12} (- (4/6 \log 4/6 + 2/6 \log 2/6)) \]
\[= \frac{1}{2} (2/3*.6 + \]
\[1/3*1.6) \]
\[= .47 \]

\[I(Type, T) = \]
\[\frac{2}{12} (1) + \frac{2}{12} (1) + \]
\[\frac{4}{12} (1) + \frac{4}{12} (1) = 1 \]

\[\text{Gain (Patrons, T)} = 1 - .47 = .53 \]
\[\text{Gain (Type, T)} = 1 - 1 = 0 \]

\[I(P) = -(p_1 \log(p_1) + p_2 \log(p_2) + .. + p_n \log(p_n)) \]
How well does it work?

Case studies show that decision trees often at least as accurate as human experts

- Study for diagnosing breast cancer had humans correctly classifying examples 65% of the time; DT classified 72% correct
- British Petroleum designed DT for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
Extensions of ID3

• Using gain ratios
• Real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of performance
• **C4.5:** extension of ID3 accounting for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, etc.
Real-valued data?

• Select thresholds defining intervals so each becomes a discrete value of attribute
• Use heuristics: e.g., always divide into quartiles
• Use domain knowledge: e.g., divide age into infant (0-2), toddler (3-5), school-aged (5-8)
• Or treat this as another learning problem
 – Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 – E.g., try midpoint between every pair of values
Noisy data?

Many kinds of noise can occur in training data

- Two examples have same attribute/value pairs, but different classifications
- Some attribute values wrong due to errors in the data acquisition or preprocessing phase
- Classification is wrong (e.g., + instead of -) because of some error
- Some attributes irrelevant to decision-making, e.g., color of a die is irrelevant to its outcome
Overfitting 😞

- **Overfitting** occurs when a statistical model describes random error or noise instead of underlying relationship.
- If hypothesis space has many dimensions (many attributes) we may find **meaningless regularity** in data irrelevant to true distinguishing features. Students with an *m* in first name, born in July, & whose SSN digits sum to an odd number get better grades in CMSC 471.
- If we have **too little training data**, even a reasonable hypothesis space can overfit.
Avoiding Overfitting

• Remove irrelevant features
 – E.g., remove ‘year observed’, ‘month observed’, ‘day observed’, ‘observer name’ from feature vector

• Getting more training data

• Pruning lower nodes in the decision tree
 – E.g., if gain of best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes
Pruning decision trees

- Pruning a decision tree is done by replacing a whole subtree by a leaf node.
- Replacement takes place if the expected error rate in the subtree is greater than in the single leaf, e.g.,
 - Training: 1 training red success and 2 training blue failures
 - Test: 3 red failures and one blue success
 - Consider replacing this subtree by a single Failure node.
- After replacement, only 2 errors instead of 5.

Training

```
Color
red
1 success 0 failure
blue
0 success 2 failures
```

Test

```
Color
red
1 success 3 failure
blue
1 success 1 failure
```

Pruned

```
FAILURE
2 success 4 failure
```
Converting decision trees to rules

• Easy to get rules from decision tree: write rule for each path from the root to leaf
• Rule’s left-hand side built from the label of the nodes & labels of arcs
• Resulting rules set can be simplified:
 – Let LHS be the left hand side of a rule
 – LHS’ obtained from LHS by eliminating some conditions
 – Replace LHS by LHS' in this rule if the subsets of the training set satisfying LHS and LHS' are equal
 – A rule may be eliminated by using meta-conditions such as “if no other rule applies”
Summary: decision tree learning

• Widely used learning methods in practice for problems with relatively **few features**

• **Strengths**
 – Fast and simple to implement
 – Can convert result to a set of easily interpretable rules
 – Empirically valid in many commercial products
 – Handles noisy data
 – Easy for people to understand

• **Weaknesses**
 – Large decision trees may be hard to understand
 – Requires fixed-length feature vectors
 – Non-incremental (i.e., batch method)
 – Univariate splits/partitioning using only one attribute at a time so limits types of possible trees