

First-Order Logic (FOL) part 1

FOL Overview

- First Order logic (FOL) is a powerful knowledge representation (KR) system
- It's used in AI systems in various ways, e.g.
 - To directly represent and reason about concepts and objects
 - –To formally specify the meaning of other KR systems
 - To provide features that are useful in neural network deep learning systems

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from others
 - Relations that hold among sets of objects
 - Functions, a subset of relations where there is only one "value" for any given "input"

• Examples:

- Objects: students, lectures, companies, cars ...
- Relations: brother-of, bigger-than, outside, part-of, hascolor, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, more-than …

User provides

- Constant symbols representing individuals in world
 - -BarackObama, Green, John, 3, "John Smith"
- Predicate symbols, map individuals to truth values
 - -greater(5,3)
 - -green(Grass)
 - -color(Grass, Green)
 - hasBrother(John, Robert)
- Function symbols, map individuals to individuals
 - -father of(SashaObama) = BarackObama
 - -color of(Sky) = Blue

What do these mean?

- User should also indicate what these mean in a way that humans will understand
 - i.e., map to their own internal representations
- May be done via a combination of
 - Choosing good names for a formal terms, e.g. calling a concept HumanBeing instead of Q5
 - Comments in the definition #human being
 - Descriptions and examples in documentation
 - Reference to other representations, e.g., sameAs
 /m/0dgw95 in Freebase and Person in schema.org
 - Giving examples (Donald Trump) and non-examples (Luke Skywalker)

FOL Provides

- Variable symbols
 - -E.g., x, y, foo
- Connectives
 - –Same as propositional logic: not (\neg), and (\land), or (\lor), implies (\rightarrow), iff (\leftrightarrow)
- Quantifiers
 - -Universal $\forall x$ or (Ax)
 - -Existential $\exists x$ or (Ex)

Sentences: built from terms and atoms

- •term (denoting an individual): constant or variable symbol, or n-place function of n terms, e.g.:
 - -Constants: john, umbc
 - -Variables: X, Y, Z
 - Functions: mother_of(john), phone(mother(x))
- Ground terms have no variables in them
 - -Ground: john, father_of(father_of(john))
 - Not Ground: father_of(X)
- Syntax may vary: e.g., maybe variables must start with a "?" of a capital letter

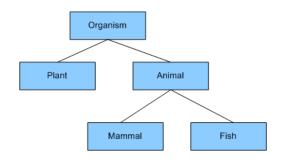
Sentences: built from terms and atoms

- atomic sentences (which are either true or false) are n-place predicates of n terms, e.g.:
 - -green(kermit)
 - between(philadelphia, baltimore, dc)
 - -loves(X, mother(X))
- complex sentences formed from atomic ones connected by the standard logical connectives with quantifiers if there are variables, e.g.:
 - –loves(mary, john) ∨ loves(mary, bill)
 - $-\forall x loves(mary, x)$

What do atomic sentences mean?

- Unary predicates typically encode a type
 - -muppet(Kermit): kermit is a kind of muppet
 - -green(kermit): kermit is a kind of green thing
 - -integer(X): x is a kind of integer
- Non-unary predicates typically encode relations or properties
 - Loves(john, mary)
 - -Greater_than(2, 1)
 - Between(newYork, philadelphia, baltimore)
 - -hasName(john, "John Smith")

Ontology



- Designing a logic representation is like designing a model in an object-oriented language
- Ontology: a "formal naming and definition of the types, properties and relations of entities for a domain of discourse"
- E.g.: <u>schema.org</u> ontology used to put semantic data on Web pages to help search engines
 - Here's the <u>semantic markup</u> Google sees on our 471 class site

Sentences: built from terms and atoms

quantified sentences adds quantifiers ∀ and ∃
 ∀x loves(x, mother(x))

 $\exists x \text{ number}(x) \land \text{greater}(x, 100), \text{ prime}(x)$

well-formed formula (wff): a sentence with no free variables or where all variables are bound by a universal or existential quantifier
 In (∀x)P(x, y) x is bound & y is free so it's not a wff

Quantifiers: ∀ and ∃

Universal quantification

- $-(\forall x)P(X)$ means P holds for **all** values of X in the domain associated with variable¹
- -E.g., $(\forall X)$ dolphin $(X) \rightarrow mammal(X)$

Existential quantification

- -(∃x)P(X) means P holds for **some** value of X in domain associated with variable
- -E.g., $(\exists X)$ mammal(X) \land lays_eggs(X)
- This lets us make statements about an object without identifying it

¹ a variable's domain is often not explicitly stated and is assumed by the context

Universal Quantifier: ∀

 Universal quantifiers typically used with implies to form rules:

Logic: $(\forall X)$ student $(X) \rightarrow smart(X)$

Means: All students are smart

Universal quantification rarely used without implies:

Logic: $(\forall X)$ student $(X) \land smart(X)$

Means: Everything is a student and is smart

Existential Quantifier: ∃

 Existential quantifiers usually used with and to specify a list of properties about an individual

Logic: $(\exists X)$ student $(X) \land smart(X)$

Meaning: There is a student who is smart

Common mistake: represent this in FOL as:

Logic: $(\exists X)$ student $(X) \rightarrow smart(X)$

Meaning: ?

Existential Quantifier: 3

 Existential quantifiers usually used with and to specify a list of properties about an individual

Logic: $(\exists X)$ student $(X) \land smart(X)$

Meaning: There is a student who is smart

Common mistake: represent this in FOL as:

Logic: $(\exists X)$ student $(X) \rightarrow smart(X)$

$$P \rightarrow Q = {}^{\sim}P \vee Q$$

 $\exists X \ student(X) \rightarrow smart(X) = \exists X \ \sim student(X) \ v \ smart(X)$

Meaning: There's something that is either not a student or is smart

Quantifier Scope

- FOL sentences have structure, like programs
- In particular, variables in a sentence have a scope
- Suppose we want to say "everyone who is alive loves someone"

$$(\forall X)$$
 alive $(X) \rightarrow (\exists Y)$ loves (X, Y)

Here's how we scope the variables

$$(\forall X)$$
 alive $(X) \rightarrow (\exists Y)$ loves (X, Y)

Quantifier Scope

- Switching order of universal quantifiers does not change the meaning
 - $-(\forall X)(\forall Y)P(X,Y) \longleftrightarrow (\forall Y)(\forall X) P(X,Y)$
 - Dogs hate cats (i.e., all dogs hate all cats)
- You can switch order of existential quantifiers
 - $-(\exists X)(\exists Y)P(X,Y) \longleftrightarrow (\exists Y)(\exists X)P(X,Y)$
 - A cat killed a dog
- Switching order of universal and existential quantifiers does change meaning:
 - Everyone likes someone: $(\forall X)(\exists Y)$ likes(X,Y)
 - Someone is liked by everyone: $(\exists Y)(\forall X)$ likes(X,Y)

```
def verify1():
  # Everyone likes someone: (\forall x)(\exists y) likes(x,y)
  for p1 in people():
                               Every person has at
    foundLike = False
                               least one individual that
    for p2 in people():
                               they like.
       if likes(p1, p2):
          foundLike = True
          break
    if not foundLike:
       print(p1, 'does not like anyone ⊗')
       return False
  return True
```

Procedural example 1

```
def verify2():
  # Someone is liked by everyone: (\exists y)(\forall x) likes(x,y)
  for p2 in people():
    foundHater = False
                               There is a person who is
    for p1 in people():
                               liked by every person in
       if not likes(p1, p2):
                               the universe.
         foundHater = True
         break
    if not foundHater
       print(p2, 'is liked by everyone \odot')
       return True
  return False
```

Procedural example 2

Connections between ∀ and ∃

 We can relate sentences involving ∀ and ∃ using extensions to <u>De Morgan's laws</u>:

1.
$$(\forall x) P(x) \leftrightarrow \neg(\exists x) \neg P(x)$$

2.
$$\neg(\forall x) P(x) \leftrightarrow (\exists x) \neg P(x)$$

3.
$$(\exists x) P(x) \leftrightarrow \neg (\forall x) \neg P(x)$$

4.
$$\neg(\exists x) P(x) \leftrightarrow (\forall x) \neg P(x)$$

Examples

- 1. All dogs don't like cats \leftrightarrow No dog likes cats
- 2. Not all dogs bark \leftrightarrow There is a dog that doesn't bark
- 3. All dogs sleep \leftrightarrow There is no dog that doesn't sleep
- 4. There is a dog that talks \leftrightarrow Not all dogs can't talk

Notational differences

• Different symbols for and, or, not, implies, ...

```
-\forall \exists \Rightarrow \Leftrightarrow \land \lor \neg \bullet \supset
-p \lor (q \land r)
-p + (q * r)
```

Prolog

```
cat(X) :- furry(X), meows (X), has(X, claws)
```

Lispy notations

Fin