UMBC 471 9.2.3

Reasoning with Propositional Logic

Chapter 7.4–7.8

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Overview

- There are many ways to approach reasoning with propositional logic
- We'll look at one, resolution, that can be extended to first order logic
- Later will look approaches that are special to propositional logic.

Reasoning / Inference

- Logical inference creates new sentences that logically follow from a set of sentences (KB)
- It can also detect if a KB is inconsistent, i.e., has sentences that entail a contradiction
- An inference rule is **sound** if every sentence X it produces from a KB logically follows from the KB

-i.e., inference rule creates no contradictions

• An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB

-Note analogy to complete search algorithms

Sound rules of inference

Examples of sound rules of inference

Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	A, $A \rightarrow B$	В
And Introduction	А, В	$A \wedge B$
And Elimination	$A \wedge B$	A
Double Negation	¬¬A	Α
Unit Resolution	$A \lor B$, $\neg B$	Α
Resolution	A ∨ B, ¬B ∨ C	A ∨ C

Resolution

 <u>Resolution</u> is a valid inference rule producing a new clause implied by two clauses containing *complementary literals*

Literal: atomic symbol or its negation, i.e., P, ~P

- Amazingly, this is the **only** interference rule needed to build a sound & complete theorem prover
 - Based on proof by contradiction, usually called resolution refutation
- The resolution rule was discovered by <u>Alan</u> <u>Robinson</u> (CS, U. of Syracuse) in the mid 1960s

Resolution

- A KB is a set of sentences all of which are true, i.e., a conjunction of sentences
- To use resolution, put KB into <u>conjunctive</u> <u>normal form</u> (CNF)
 - Each sentence is a disjunction of one or more literals (positive or negative atoms)
- Every KB can be put into CNF, it's just a matter of rewriting its sentences using standard tautologies, e.g.:

 $-P \rightarrow Q \equiv ~P \lor Q$

Resolution Example

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- KB: $[P \rightarrow Q, Q \rightarrow R, Q \rightarrow S]$
- KB in <u>CNF</u>: [$^{P}\lor Q$, $^{Q}\lor R$, $^{Q}\lor S$]
- Resolve KB[0] and KB[1] producing: $\sim P \lor R$ (*i.e.*, $P \rightarrow R$)
- Resolve KB[0] and KB[2] producing: $\sim P \lor S$ (*i.e.*, $P \rightarrow S$)
- New KB: [~P∨Q , ~Q∨R, ~Q∨S, ~P∨R, ~P∨S]

Tautologies $(A \rightarrow B) \leftrightarrow (^{\sim}A \lor B)$ $(A \lor (B \land C)) \leftrightarrow$ $(A \lor B) \land (A \lor C)$

Proving it's raining with rules

- A **proof** is a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule
- Last sentence is the **theorem** (also called goal or query) that we want to prove
- The weather problem using traditional reasoning

1 Hu	premise	"It's humid"
2 Hu→Ho	premise	"If it's humid, it's hot"
3 Ho	modus ponens(1,2)	"It's hot"
4 (Ho∧Hu)→R	premise	"If it's hot & humid, it's raining"
5 Ho∧Hu	and introduction(1,3)	"It's hot and humid"
6 R	modus ponens(4,5)	"It's raining"

Proving it's raining with resolution

A simple proof procedure

This procedure generates new sentences in a KB

- 1. Convert all sentences in the KB to CNF¹
- 2. Find all pairs of sentences in KB with complementary literals² that have not yet been resolved
- 3. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- Is it sound?
- Is it complete?
- Will it always terminate?

1: Conjunctive normal form is a conjunction of disjunctive sentences

2: a literal is a variable or its negation

Resolution refutation

- 1. Add negation of goal to the KB
- 2. Convert all sentences in KB to CNF
- 3. Find all pairs of sentences in KB with complementary literals that have not yet been resolved
- 4. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- If we derived an empty clause (i.e., a contradiction) then the conclusion follows from the KB
- If we did not, the conclusion cannot be proved from the KB

