Informed Search

Chapter 4 (b)

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison.
Today’s class: local search

• Iterative improvement methods (aka local search) move from potential solution to potential solution until a goal is reached

• Examples
 – Hill climbing
 – Simulated annealing
 – Local beam search
 – Genetic algorithms

• Online search
Hill Climbing

• Extended current path with successor that’s closer to solution than end of current path
• If goal is to get to the top of a hill, then always take a step that leads you up
• Simple hill climbing: take any upward step
• Steepest ascent hill climbing: consider all possible steps, take one that goes up most
• No memory required
Hill climbing on a surface of states

Height defined by an evaluation function that takes a state & returns a number
Hill climbing for search

• For informed search and many other problems (e.g., neural network training) we want to find a global **minimum**
 – Search evaluation function: measure of how far the current state is from a goal

• This is an easy change to make in the algorithm, or we can just negate the evaluation function

• We still call it hill climbing though
Hill-climbing search

- If there's successor s for current state n such that
 - $h(s) < h(n)$ and $h(s) \leq h(t)$ for all successors t
 then move from n to s; otherwise, halt at n

 i.e.: Look one step ahead to decide if a successor is better than current state; if so, move to best successor

- Like greedy search, but doesn't allow backtracking or jumping to alternative path since it has no memory

- Like beam search with a beam width of 1 (i.e., maximum size of the nodes list is 1)

- Not complete since search may terminate at a local minima, plateau or ridge
Hill climbing example

\[f(n) = -(\text{number of tiles out of place}) \]
Exploring the Landscape

• **Local Maxima**: peaks not highest point in space

• **Plateaus**: broad flat region that gives search algorithm no guidance (use random walk)

• **Ridges**: flat like plateau, but with drop-offs to sides; steps to North, East, South and West may go down, but step to NW may go up

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html
Drawbacks of hill climbing

• Problems: local maxima, plateaus, ridges
• Possible remedies:
 – **Random restart:** keep restarting search from random locations until a goal is found, may require an estimate – *how low can we go*
 – **Problem reformulation:** reformulate search space to eliminate these problematic features
• Some problem spaces are great for hill climbing and others are terrible
Example of a local optimum

-3

\[\begin{array}{ccc}
1 & 2 & 5 \\
7 & 4 & \\
8 & 6 & 3 \\
\end{array}\]

-4

\[\begin{array}{ccc}
2 & 5 \\
1 & 7 & 4 \\
8 & 6 & 3 \\
\end{array}\]

\[\begin{array}{ccc}
1 & 2 & 5 \\
7 & 4 & \\
8 & 6 & 3 \\
\end{array}\]

\[\begin{array}{ccc}
1 & 2 & 5 \\
8 & 7 & 4 \\
6 & 3 & \\
\end{array}\]

-4

\[\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & 0 \\
7 & 6 & 5 \\
\end{array}\]

\[\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & \\
7 & 6 & 5 \\
\end{array}\]

\[\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & 0 \\
7 & 6 & 5 \\
\end{array}\]
The 8 Queens problem often setup as follows:

- Randomly put one queen in each column
- Goal state: no two queens attack one another
- An action is moving any queen to a different row
- Each state thus has 65 successors
- Heuristic h: # of pairs attacking one another
- Current state: $h = 17$
- $h = 0 \Rightarrow$ solution
Hill Climbing and 8 Queens

Figure 4.3 (a) An 8-queens state with heuristic cost estimate \(h = 17 \), showing the value of \(h \) for each possible successor obtained by moving a queen within its column. The best moves are marked. (b) A local minimum in the 8-queens state space; the state has \(h = 1 \) but every successor has a higher cost.
Genetic algorithms (GA)

• Search technique inspired by evolution
• Similar to stochastic beam search
• Start with *initial population* of k random states
• New states generated by *mutating* a single state or *reproducing* (combining) two parent states, selected according to their *fitness*
• Encoding used for *genome* of an individual strongly affects the behavior of search
Ma and Pa solutions
8 Queens problem

• Represent state by a string of 8 digits in {1..8}
• $S = ‘32752411’$
• Fitness function = # of non-attacking pairs
• $F(S_{\text{solution}}) = 8 \times 7 / 2 = 28$
• $F(S_1) = 24$
Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the unshaded columns are retained.
Genetic algorithms

Fitness function: number of non-attacking pairs of queens (min=0, max=(8 × 7)/2 = 28)

Probability of mating is a function of fitness score

Cross-over point for a mating pair chosen randomly

Resulting offspring subject to a random mutation with probability
Summary: Informed search

• **Hill-climbing algorithms** keep only a single state in memory, but can get stuck on local optima

• **Simulated annealing** escapes local optima, and is complete and optimal given a “long enough” cooling schedule

• **Genetic algorithms** can search a large space by modeling biological evolution

• **Online search** algorithms are useful in state spaces with partial/no information