Informed Search
Chapter 4 (a)

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison
Today’s class

• Heuristic search
• Best-first search
 – Greedy search
 – Beam search
 – Algorithms A and A*
 – Examples
• Memory-conserving variations of A*
• Heuristic functions
Big idea: **heuristic**

Merriam-Webster's Online Dictionary

Heuristic (pron. \`hyu- ‘ris-tik\'): adj. [from Greek *heuriskein* to discover] involving or serving as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)

heuristic 1. <programming> A **rule of thumb**, simplification or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood. Unlike algorithms, heuristics do not guarantee feasible solutions and are often used with no theoretical guarantee. 2. <algorithm> **approximation algorithm**.

From WordNet (r) 1.6

heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to a general formulation that serves to guide investigation [ant: algorithmic] n : a **commonsense rule** (or set of rules) intended to increase the probability of solving some problem [syn: heuristic rule, heuristic program]
Informed methods add domain-specific information

- Select best path along which to continue searching
- $h(n)$: estimates *goodness* of node n
- $h(n) = \text{estimated cost (or distance)}$ of minimal cost path from n to a goal state.
- Based on domain-specific information and computable from current state description that estimates how close we are to a goal
Heuristics

- All domain knowledge used in search is encoded in the heuristic function, $h(<\text{node}>)$

- Examples:
 - 8-puzzle: number of tiles out of place
 - 8-puzzle: sum of distances each tile is from its goal
 - Missionaries & Cannibals: # people on starting river bank

- In general
 - $h(n) \geq 0$ for all nodes n
 - $h(n) = 0$ implies that n is a goal node
 - $h(n) = \infty$ implies n is a dead-end that can’t lead to goal
Heuristics for 8-puzzle

The number of misplaced tiles (not including the blank)

Current State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

In this case, only “8” is misplaced, so heuristic function evaluates to 1

In other words, the heuristic says that it thinks a solution may be available in just 1 more move
Heuristics for 8-puzzle

Manhattan Distance (not including the blank)

- The 3, 8 and 1 tiles are misplaced (by 2, 3, and 3 steps) so the heuristic function evaluates to 8
- Heuristic says that it *thinks* a solution may be available in just 8 more moves.
- The misplaced heuristic’s value is 3

<table>
<thead>
<tr>
<th>Current State</th>
<th>Goal State</th>
<th>Current State</th>
<th>Goal State</th>
<th>Current State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2 8</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>4 5 6</td>
<td>7 1</td>
<td>7 8</td>
</tr>
<tr>
<td>2 spaces</td>
<td>3 spaces</td>
<td>3 spaces</td>
<td>3 spaces</td>
<td>Total 8</td>
<td></td>
</tr>
</tbody>
</table>
We can use heuristics to guide search.

In this *hill climbing* example, Manhattan Distance heuristic helps us quickly find a solution to the 8-puzzle.
In this example, hill climbing doesn’t work!

All nodes on fringe are taking a step “backwards” (local minima)

This puzzle is solvable in just 12 more steps
Best-first search

• Search algorithm that improves depth-first search by expanding most promising node chosen according to heuristic rule
• Order nodes on nodes list by increasing value of an evaluation function, $f(n)$, incorporating domain-specific information
• This is a generic way of referring to the class of informed methods
Greedy best first search search

- A **greedy algorithm** makes locally optimal choices in hope of finding a global optimum

- Uses evaluation function $f(n) = h(n)$, sorting nodes by increasing values of f

- Selects node to expand appearing closest to goal (i.e., node with smallest f value)

- Not complete

- Not **admissible**, as in example
 - Assume arc costs = 1, greedy search finds goal g, with solution cost of 5
 - Optimal solution is path to goal with cost 3
Beam search

• Use evaluation function $f(n)$, but maximum size of the nodes list is k, a fixed constant
• Only keep k best nodes as candidates for expansion, discard rest
• k is the *beam width*
• More space efficient than greedy search, but may discard nodes on a solution path
• As k increases, approaches best first search
• Not complete
• Not admissible (optimal)
Algorithm A

- Use as an evaluation function
 \[f(n) = g(n) + h(n) \]
- \(g(n) \) = minimal-cost path from the start state to state \(n \)
- \(g(n) \) term adds “breadth-first” component to evaluation function
- Ranks nodes on search frontier by estimated cost of solution from start node via given node to goal
- Not complete if \(h(n) \) can = \(\infty \)
- Not admissible (optimal)
Algorithm A

1. Put the start node S on the nodes list, called OPEN
2. If OPEN is empty, exit with failure
3. Select node in OPEN with minimal $f(n)$ and place on CLOSED
4. If n is a goal node, collect path back to start and stop
5. Expand n, generating all its successors and attach to them pointers back to n. For each successor n' of n
 1. If n' not already on OPEN or CLOSED
 • put n' on OPEN
 • compute $h(n')$, $g(n')=g(n)+c(n,n')$, $f(n')=g(n')+h(n')$
 2. If n' already on OPEN or CLOSED and if $g(n')$ is lower for new version of n', then:
 • Redirect pointers backward from n' on path with lower $g(n')$
 • Put n' on OPEN
Algorithm A*

- Pronounced “a star”
- Algorithm A with constraint that $h(n) \leq h^*(n)$
- $h^*(n) = \text{true cost of minimal cost path from } n \text{ to a goal}$
- h is \textbf{admissible} when $h(n) \leq h^*(n)$ holds
- Using an admissible heuristic guarantees that 1st solution found will be an \textbf{optimal} one
- A* is \textbf{complete} whenever branching factor is finite and every action has fixed, positive cost
- A* is \textbf{admissible}

Observations on A

• **Perfect heuristic:** If \(h(n) = h^*(n) \) for all \(n \), only nodes on an optimal solution path expanded; no extra work is done

• **Null heuristic:** If \(h(n) = 0 \) for all \(n \), then it is an admissible heuristic and A* acts like uniform-cost search

• **Better heuristic:** If \(h_1(n) < h_2(n) \leq h^*(n) \) for all non-goal nodes, then \(h_2 \) is a *better* heuristic than \(h_1 \)
 – If A1* uses \(h_1 \), and A2* uses \(h_2 \), then every node expanded by A2* is also expanded by A1*
 – i.e., A1 expands at least as many nodes as A2*
 – We say that A2* is *better informed* than A1*

• The closer \(h \) to \(h^* \), the fewer extra nodes expanded
Example search space
Example search space

parent pointer (current)

start state

arc cost

h value

g value (current)
goal state
Example

<table>
<thead>
<tr>
<th>n</th>
<th>g(n)</th>
<th>h(n)</th>
<th>f(n)</th>
<th>h*(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>4 inf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>E</td>
<td>8 inf</td>
<td>inf</td>
<td>inf</td>
<td>inf</td>
</tr>
<tr>
<td>G</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

- h*(n) is (hypothetical) perfect heuristic (an oracle)
- Since h(n) <= h*(n) for all n, h is admissible (optimal)
- Optimal path = S B G with cost 9
Greedy search

\[f(n) = h(n) \]

<table>
<thead>
<tr>
<th>node expanded</th>
<th>nodes list</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>{ C(3) B(4) A(8) }</td>
</tr>
<tr>
<td>C</td>
<td>{ G(0) B(4) A(8) }</td>
</tr>
<tr>
<td>G</td>
<td>{ B(4) A(8) }</td>
</tr>
</tbody>
</table>

- Solution path found is S C G, 3 nodes expanded.
- See how fast the search is!! But it is NOT optimal.
A* search

\[f(n) = g(n) + h(n) \]

node exp. nodes list

\{ S(8) \}
S \{ A(9) B(9) C(11) \}
A \{ B(9) G(10) C(11) D(\text{inf}) E(\text{inf}) \}
B \{ G(9) G(10) C(11) D(\text{inf}) E(\text{inf}) \}
G \{ C(11) D(\text{inf}) E(\text{inf}) \}

- Solution path found is S B G, 4 nodes expanded..
- Still pretty fast. And optimal, too.
Proof of the optimality of A*

• Assume that A* has selected G2, a goal state with a suboptimal solution, i.e., \(g(G2) > f^* \)

• Proof by contradiction shows it’s impossible
 – Choose a node \(n \) on an optimal path to \(G \)
 – Because \(h(n) \) is admissible, \(f^* \geq f(n) \)
 – If we choose G2 instead of \(n \) for expansion, then \(f(n) \geq f(G2) \)
 – This implies \(f^* \geq f(G2) \)
 – G2 is a goal state: \(h(G2) = 0, f(G2) = g(G2) \).
 – Therefore \(f^* \geq g(G2) \)
 – Contradiction
Dealing with hard problems

• For large problems, A* may require too much space
• Variations conserve memory: IDA* and SMA*
• IDA*, iterative deepening A*, uses successive iteration with growing limits on f, e.g.
 – A* but don’t consider a node n where \(f(n) > 10 \)
 – A* but don’t consider a node n where \(f(n) > 20 \)
 – A* but don’t consider a node n where \(f(n) > 30 \), ...
• SMA* -- Simplified Memory-Bounded A*
 – Uses queue of restricted size to limit memory use
How to find good heuristics

• If $h_1(n) < h_2(n) \leq h^*(n)$ for all n, h_2 is better than (dominates) h_1

• **Relaxing problem:** remove constraints for easier problem; use its solution cost as heuristic function

• Max of two admissible heuristics is a **Combining heuristics:** admissible heuristic, and it’s better!

• Use statistical estimates to compute h; may lose admissibility

• Identify good features, then use **machine learning** to find heuristic function; also may lose admissibility
Summary: Informed search

• **Best-first search** is general search where minimum-cost nodes (w.r.t. some measure) are expanded first.

• **Greedy search** uses minimal estimated cost $h(n)$ to goal state as measure; reduces search time, but is neither complete nor optimal.

• **A* search** combines uniform-cost search & greedy search: $f(n) = g(n) + h(n)$. Handles state repetitions & $h(n)$ never overestimates.

 – A* is complete & optimal, but space complexity high.

 – Time complexity depends on quality of heuristic function.

 – IDA* and SMA* reduce the memory requirements of A*.