Uninformed Search

Chapter 3

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison
Today’s topics

• Goal-based agents
• Representing states and actions
• Example problems
• Generic state-space search algorithm
• Specific algorithms
 – Breadth-first search
 – Depth-first search
 – Uniform cost search
 – Depth-first iterative deepening
• Example problems revisited
Big Idea

Allen Newell and Herb Simon developed the problem space principle as an AI approach in the late 60s/early 70s

"The rational activity in which people engage to solve a problem can be described in terms of (1) a set of states of knowledge, (2) operators for changing one state into another, (3) constraints on applying operators and (4) control knowledge for deciding which operator to apply next."

Example: 8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3x3 board, move the tiles to produce a desired goal configuration.
15 puzzle

• Popularized, but not invented, by **Sam Loyd**
• He **offered** $1000 to all who could solve it in 1896
• He sold many puzzles
• Its states form two *disjoint* spaces
• There was no path to solution from initial state!
Building goal-based agents

We must answer the following questions

– How do we represent the state of the “world”?
– What is the goal and how can we recognize it?
– What are the possible actions?
– What relevant information do we encode to describe states, actions and their effects and thereby solve the problem?
Representing states

• State of an 8-puzzle?
Representing states

- State of an 8-puzzle?
- A 3x3 array of integer in \{0..8\}
- No integer appears twice
- 0 represents the empty space

- In Python, we might implement this using a nine-character string: “540681732”
- And write functions to make the 2D coordinates to an index
What’s the goal to be achieved?

- Describe situation we want to achieve, a set of properties that we want to hold, etc.
- Defining a **goal test** function that when applied to a state returns True or False
- For our problem:
  ```python
def isGoal(state):
    return state == "123405678"
  ```
What are the actions?

• **Primitive actions** for changing the state

 In a *deterministic* world: no uncertainty in an action’s effects (simple model)

• Given action and description of current world state, action completely specifies

 – Whether action *can* be applied to the current world (i.e., is it applicable and legal?) and

 – What state *results* after action is performed in the current world (i.e., no need for *history* information to compute the next state)
Representing actions

• Actions ideally considered as **discrete events** that occur at an **instant of time**

• Example, in a planning context
 – If state:inClass and perform action:goHome, then next state is state:atHome
 – There’s no time where you’re neither in class nor at home (i.e., in the state of “going home”)

Representing actions

• Actions for 8-puzzle?
Representing actions

- **Actions for 8-puzzle?**

- **Number of actions/operators depends on the representation used in describing a state**
 - Specify 4 possible moves for each of the 8 tiles, resulting in a total of \(4 \times 8 = 32\) operators
 - Or, Specify four moves for “blank” square and we only need 4 operators

- **Representational shift can simplify a problem!**
Representing states

• **Size of a problem** usually described in terms of possible **number of states**

 – Tic-Tac-Toe has about 3^9 states ($19,683 \approx 2 \times 10^4$)
 – Checkers has about 10^{40} states
 – Rubik’s Cube has about 10^{19} states
 – Chess has about 10^{120} states in a typical game
 – Go has 2×10^{170}
 – Theorem provers may deal with an infinite space

• State space size \approx solution difficulty
Representing states

• Our estimates were loose upper bounds
• How many **possible, legal** states does tic-tac-toe really have?
• Simple upper bound: nine board cells, each of which can be empty, O or X, so 3^9
• Only 593 states after eliminating
 – impossible states

 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{X} & \text{X} & \text{X} \\
 \hline
 \end{array}
 \]

 – Rotations and reflections

 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{X} & \text{X} & \text{X} \\
 \hline
 \end{array}
 \quad
 \begin{array}{|c|c|c|}
 \hline
 \text{X} & \text{X} & \text{X} \\
 \hline
 \end{array}
 \]

Some example problems

- Toy problems and micro-worlds
 - 8-Puzzle
 - Missionaries and Cannibals
 - Cryptarithmetic
 - Remove 5 Sticks
 - Water Jug Problem
- Real-world problems
The 8-Queens Puzzle

Place eight queens on a chessboard such that no queen attacks any other.

We can generalize the problem to a $N \times N$ chessboard.

What are the states, goal test, actions?
Route Planning

Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text
Water Jug Problem

• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water
 – e.g.: full 5 gallon jug and empty 2 gallon jug
• Possible actions:
 – Pour from jug X to jug Y until X empty or Y full
 – Empty jug X onto the floor
• Goal: J1 has G1 water and J2 G2
 – G1 or G2 can be -1 to represent any amount
• E.g.: initially full jugs with capacities 3 and 1 liters, goal is to have 1 liter in each
So…

• How can we represent the states?
• What an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which ones can be performed in a given state; what is the resulting state
• How do we search for a solution from an initial state given a goal state
• What is a solution? The goal state achieved or a path to it?
Search in a state space

• Basic idea:
 – Create representation of initial state
 – Try all possible actions & connect states that result
 – Recursively apply process to the new states until we find a solution or dead ends

• We need to keep track of the connections between states and might use a
 – Tree data structure or
 – Graph data structure

• A graph structure is best in general...
Search in a state space

Consider a water jug problem with a 3-liter and 1-liter jug, an initial state of (3,1) and a goal stage of (1,1).

Tree model of space

Graph model of space

graph model avoids redundancy and loops and is usually preferred
Formalizing state space search

• A state space is a **graph** \((V, E)\) where \(V\) is a set of **nodes** and \(E\) is a set of **arcs**, and each arc is directed from a node to another node.

• **Nodes**: data structures with state description and other info, e.g., node’s parent, name of action that generated it from parent, etc.

• **Arrows**: instances of actions, head is a state, tail is the state that results from action.
Formalizing search in a state space

• Each arc has fixed, positive **cost** associated with it corresponding to the action cost
 – Simple case: all costs are 1

• Each node has a set of **successor nodes** corresponding to all legal actions that can be applied at node’s state
 – **Expanding** a node = generating its successor nodes and adding them and their associated arcs to the graph

• One or more nodes are marked as **start nodes**

• A **goal test** predicate is applied to a state to determine if its associated node is a goal node
Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
 – e.g.: a full 5-gallon jug and an empty 2-gallon jug
• Possible actions:
 – Pour from jug X to jug Y until X empty or Y full
 – Empty jug X onto the floor
• Goal: J1 has G1 water and J2 G2
 – G1 or G0 can be -1 to represent any amount
Example: Water Jug Problem

Given full 5-gal. jug and empty 2-gal. jug, fill 2-gal jug with one gallon

• State representation?
 – General state?
 – Initial state?
 – Goal state?

• Possible actions?
 – Condition?
 – Resulting state?

<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Transition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Water Jug Problem

Given full 5-gal. jug and empty 2-gal. jug, fill 2-gal jug with one gallon

• State = (x,y), where x is water in jug 1; y is water in jug 2
• Initial State = (5,0)
• Goal State = (-1,1), where -1 means any amount

<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Transition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump1</td>
<td>x>0</td>
<td>(x,y)→(0,y)</td>
<td>Empty Jug 1</td>
</tr>
<tr>
<td>dump2</td>
<td>y>0</td>
<td>(x,y)→(x,0)</td>
<td>Empty Jug 2</td>
</tr>
<tr>
<td>pour_1_2</td>
<td>x>0 & y<C2</td>
<td>(x,y)→(x-D,y+D)</td>
<td>Pour from Jug 1 to Jug 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D = \min(x,C2-y))</td>
<td></td>
</tr>
<tr>
<td>pour_2_1</td>
<td>y>0 & x<C1</td>
<td>(x,y)→(x+D,y-D)</td>
<td>Pour from Jug 2 to Jug 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D = \min(y,C1-x))</td>
<td></td>
</tr>
</tbody>
</table>
Formalizing search

• **Solution**: sequence of actions associated with a path from a start node to a goal node

• **Solution cost**: sum of the arc costs on the solution path
 - If all arcs have same (unit) cost, then solution cost is length of solution (number of steps)
 - Algorithms generally require that arc costs cannot be negative (why?)
Formalizing search

• **State-space search**: searching through state space for solution by **making explicit** a portion of an **implicit** state-space graph to find a goal node
 – Can’t materializing whole space for large problems
 – Initially V={S}, where S is the start node, E={}
 – On expanding S, its *successor nodes* are generated and added to V and associated *arcs added to E*
 – Process continues until a goal node is found

• Nodes represent a *partial solution* path (+ cost of partial solution path) from S to the node
 – From a node there may be many possible paths (and thus solutions) with this partial path as a prefix
State-space search algorithm

;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, problem.OPERATORS))
 end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
Key procedures to be defined

• EXPAND
 – Generate a node’s successor nodes, adding them to the graph if not already there

• GOAL-TEST
 – Test if state satisfies all goal conditions

• QUEUEING-FUNCTION
 – Maintain ranked list of nodes that are candidates for expansion
 – Changing definition of the QUEUEING-FUNCTION leads to different search strategies
Informed vs. uninformed search

Uninformed search strategies (blind search)
– Use no information about likely *direction* of a goal
– Methods: breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional

Informed search strategies (heuristic search)
– Use information about domain to (try to) (usually) head in the general direction of goal node(s)
– Methods: hill climbing, best-first, greedy search, beam search, algorithm A, algorithm A*
Evaluating search strategies

• Completeness
 – Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
 – Usually measured by *number of nodes expanded*

• Space complexity
 – Usually measured by maximum size of graph/tree during the search

• Optimality/Admissibility
 – If a solution is found, is it *guaranteed* to be an optimal one, i.e., one with minimum cost
Example of uninformed search strategies

Consider this search space where S is the start node and G is the goal. Numbers are arc costs.
Classic uninformed search methods

- The four classic uninformed search methods
 - Breadth first search (BFS)
 - Depth first search (DFS)
 - Uniform cost search (generalization of BFS)
 - Iterative deepening (blend of DFS and BFS)
- To which we can add another technique
 - Bi-directional search (hack on BFS)
Breadth-First Search

- Enqueue nodes in **FIFO** (first-in, first-out) order
- Complete
- **Optimal** (i.e., admissible) finds shortest path, which is optimal if all operators have same cost
- **Exponential time and space complexity**, $O(b^d)$, where d is depth of solution; b is branching factor (i.e., # of children)
- Takes a **long time to find solutions** with large number of steps because must explore all shorter length possibilities first
Breadth-First Search

weighted arcs

<table>
<thead>
<tr>
<th>Expanded node</th>
<th>Nodes list (aka Fringe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S⁰</td>
<td>{ S⁰ }</td>
</tr>
<tr>
<td>A³</td>
<td>{ A³ B¹ C⁸ }</td>
</tr>
<tr>
<td>B¹</td>
<td>{ C⁸ D⁶ E¹⁰ G¹⁸ G²¹ }</td>
</tr>
<tr>
<td>C⁸</td>
<td>{ D⁶ E¹⁰ G¹⁸ G²¹ G¹³ }</td>
</tr>
<tr>
<td>D⁶</td>
<td>{ E¹⁰ G¹⁸ G²¹ G¹³ }</td>
</tr>
<tr>
<td>E¹⁰</td>
<td>{ G¹⁸ G²¹ G¹³ }</td>
</tr>
<tr>
<td>G¹⁸</td>
<td>{ G²¹ G¹³ }</td>
</tr>
</tbody>
</table>

Notation

G is node; 18 is cost of shortest known path from start node S

Note: we typically don’t check for goal until we expand node

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7
Breadth-First Search

Long time to find solutions with many steps: we must look at all shorter length possibilities first

• Complete search tree of depth d where nodes have b children has $1 + b + b^2 + \ldots + b^d = (b^{(d+1)} - 1)/(b-1)$ nodes = $O(b^d)$

• Tree of depth 12 with branching 10 has more than a trillion nodes

• If BFS expands 1000 nodes/sec and nodes uses 100 bytes, then it may take 35 years to run and uses 111 terabytes of memory!
Depth-First (DFS)

- Enqueue nodes on nodes in LIFO (last-in, first-out) order, i.e., use stack data structure to order nodes.
- **May not terminate** w/o depth bound, i.e., ending search below fixed depth D (depth-limited search).
- **Not complete** (with or w/o cycle detection, with or w/o a cutoff depth).
- **Exponential time**, $O(b^d)$, but **linear space**, $O(bd)$.
- Can find **long solutions quickly** if lucky (and **short solutions slowly** if unlucky!)
- On reaching deadend, can only back up one level at a time even if problem occurs because of a bad choice at top of tree.
Depth-First Search

<table>
<thead>
<tr>
<th>Expanded node</th>
<th>Nodes list</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^0</td>
<td>${ A^3 B^1 C^8 }$</td>
</tr>
<tr>
<td>A^3</td>
<td>${ D^6 E^{10} G^{18} B^1 C^8 }$</td>
</tr>
<tr>
<td>D^6</td>
<td>${ E^{10} G^{18} B^1 C^8 }$</td>
</tr>
<tr>
<td>E^{10}</td>
<td>${ G^{18} B^1 C^8 }$</td>
</tr>
<tr>
<td>G^{18}</td>
<td>${ B^1 C^8 }$</td>
</tr>
</tbody>
</table>

Solution path found is $S \ A \ G$, cost 18

Number of nodes expanded (including goal node) = 5
Uniform-Cost Search (UCS)

• Enqueue nodes by **path cost**. i.e., let $g(n) =$ cost of path from *start* to current node n. Sort nodes by increasing value of $g(n)$.

• Also called [Dijkstra’s Algorithm](https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm), similar to *Branch and Bound Algorithm* from operations research

• **Complete (***

• **Optimal/Admissible (***

 Depends on goal test being applied *when node is removed from nodes list*, not when its parent node is expanded & node first generated

• **Exponential time and space complexity, $O(b^d)$**
Uniform-Cost Search

Expanded node | Nodes list
--- | ---
S^0 | \{ B^1, A^3, C^8 \}
A^3 | \{ D^6, C^8, E^{10}, G^{18}, G^{21} \}
B^1 | \{ A^3, C^8, G^{21} \}
D^6 | \{ C^8, E^{10}, G^{18}, G^{21} \}
C^8 | \{ E^{10}, G^{13}, G^{18}, G^{21} \}
E^{10} | \{ G^{13}, G^{18}, G^{21} \}
G^{13} | \{ G^{18}, G^{21} \}

Solution path found is S C G, cost 13
Number of nodes expanded (including goal node) = 7
Depth-First Iterative Deepening (DFID)

- Do DFS to depth 0, then (if no solution) DFS to depth 1, etc.
- Usually used with a tree search
- Complete
- **Optimal/Admissible** if all operators have unit cost, else finds shortest solution (like BFS)
- Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times, but since almost all nodes are near tree bottom, worst case time complexity still exponential, $O(b^d)$
Depth-First Iterative Deepening (DFID)

- If branching factor is b and solution is at depth d, then nodes at depth d are generated once, nodes at depth $d-1$ are generated twice, etc.
 - Hence $b^d + 2b^{(d-1)} + \ldots + db \leq b^d / (1 - 1/b)^2 = O(b^d)$.
 - If $b=4$, worst case is 1.78×4^d, i.e., 78% more nodes searched than exist at depth d (in worst case)

- **Linear space complexity**, $O(bd)$, like DFS
- Has advantages of BFS (completeness) and DFS (i.e., limited space, finds longer paths quickly)
- Preferred for **large state spaces** where **solution depth** is unknown
How they perform

• Depth-First Search:
 – 4 Expanded nodes: S A D E G
 – Solution found: S A G (cost 18)

• Breadth-First Search:
 – 7 Expanded nodes: S A B C D E G
 – Solution found: S A G (cost 18)

• Uniform-Cost Search:
 – 7 Expanded nodes: S A D B C E G
 – Solution found: S C G (cost 13)

 Only uninformed search that worries about costs

• Iterative-Deepening Search:
 – 10 nodes expanded: S S A B C S A D E G
 – Solution found: S A G (cost 18)
Searching Backward from Goal

• Usually a successor function is reversible
 – i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s properties), we could search backward to the initial state

• It might be more efficient
 – Depends on whether the graph fans in or out
Bi-directional search

- Alternate searching from the start state toward the goal and from the goal state toward the start
- Stop when the frontiers intersect
- Works well only when there are unique start & goal states
- Requires ability to generate “predecessor” states
- Can (sometimes) lead to finding a solution more quickly
Comparing Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>b^d</td>
<td>bm</td>
<td>bl</td>
<td>bd</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>