First-Order Logic

First-order logic

- First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from others
- Relations that hold among sets of objects
- Functions, a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, hascolor, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, more-than

User provides

- Constant symbols representing individuals in world -BarackObama, Green, John, 3, "John Smith"
- Predicate symbols, map individuals to truth values
- greater(5,3)
-green(Grass)
- color(Grass, Green)
- hasBrother(John, Robert)
- Function symbols, map individuals to individuals
-father_of(SashaObama) = BarackObama
-color_of(Sky) = Blue

FOL Provides

- Variable symbols
-E.g., x, y, foo
- Connectives
-Same as propositional logic: not (\neg), and (\wedge), or (\vee), implies (\rightarrow), iff (\leftrightarrow)
- Quantifiers
-Universal $\forall \mathbf{x}$ or (Ax)
-Existential $\exists x$ or (Ex)

Sentences: built from terms and atoms

- term (denoting a real-world individual) is a constant or variable symbol, or n-place function of n terms, e.g.:
-Constants: john, umbc
-Variables: x, y, z
-Functions: mother_of(john), phone(mother(x))
- Ground terms have no variables in them
-Ground: john, father_of(father_of(john))
-Not Ground: father_of(X)

Sentences: built from terms and atoms

- atomic sentences (which are either true or false) are an n-place predicate of n terms, e.g.: -green(Kermit)
-between(Philadelphia, Baltimore, DC) -loves(X, mother(X))
- complex sentences are formed from atomic sentences connected by logical connectives:

$$
\neg P, P \vee Q, P \wedge Q, P \rightarrow Q, P \leftrightarrow Q
$$

where P and Q are sentences

What do atomic sentences mean?

- Unary predicates typically encode a types
-Dolphin(flipper): flipper is a kind of dolphin -Green(kermit): kermit is a kind of green thing - Integer(x): x is a kind of integer
- Non-unary predicates typically encode relations
-Loves(john, mary)
-Greater_than(2,1)
-Between(newYork, philadelphia, baltimore)
-hasName(John, "John Smith")

Ontology

- Designing a logic representation is similar to modeling in an object-oriented language
- An ontology is a "formal naming and definition of the types, properties and relations of entities for a domain of discourse"
- See schema.org as for an ontology that's used by search engines to add semantic data to web sites

Sentences: built from terms and atoms

- quantified sentences adds quantifiers \forall and \exists
$-\forall x$ loves $(x$, mother (x))
$-\exists x$ number $(x) \wedge$ greater $(x, 100)$, prime (x)
- A well-formed formula (wff) is a sentence with no free variables; all variables are bound by either a universal or existential quantifier $\ln (\forall \mathbf{x}) \mathbf{P}(\mathbf{x}, \mathbf{y}) \mathrm{x}$ is bound and y is free

Quantifiers

- Universal quantification
$-(\forall x) P(x)$ means P holds for all values of x in domain associated with variable
- E.g., ($\forall \mathrm{x}$) dolphin $(\mathrm{x}) \rightarrow$ mammal (x)
- Existential quantification
$-(\exists x) P(x)$ means P holds for some value of x in domain associated with variable
-E.g., ($\exists \mathrm{x}$) mammal(x) \wedge lays_eggs(x)
-This lets us make a statement about some object without identifying it

Quantifiers (1)

- Universal quantifiers typically used with implies to form rules:
Logic: $(\forall x)$ student $(x) \rightarrow \operatorname{smart}(x)$
Meaning: All students are smart
- Universal quantification rarely used to make statements about every individual in world:
Logic: ($\forall x$) student $(x) \wedge \operatorname{smart}(x)$
Meaning: Everything in the world is a student and is smart

Quantifiers (2)

- Existential quantifiers usually used with and to specify a list of properties about an individual
Logic: ($\exists x)$ student $(x) \wedge \operatorname{smart}(x)$
Meaning: There is a student who is smart
- Common mistake: represent this in FOL as:

Logic: ($\exists x$) student(x) \rightarrow smart((x)
Meaning: ?

Quantifiers (2)

- Existential quantifiers usually used with and to specify a list of properties about an individual
Logic: $(\exists x)$ student $(x) \wedge \operatorname{smart}(x)$
Meaning: There is a student who is smart
- Common mistake: represent this in FOL as:

Logic: $(\exists x)$ student $(x) \rightarrow \operatorname{smart}(x)$
$P \rightarrow Q=\sim P \vee Q$
$\exists x \operatorname{student}(x) \rightarrow \operatorname{smart}(x)=\exists x \sim \operatorname{student}(x)$ v smart (x)
Meaning: There's something that is not a student or is smart

Quantifier Scope

- FOL sentences have structure, like programs
- In particular, variables in a sentence have a scope
- For example, suppose we want to say
- everyone who is alive loves someone
$-(\forall x)$ alive $(x) \rightarrow(\exists y)$ loves (x, y)
- Here's how we scope the variables

$$
(\forall x) \text { alive }(x) \rightarrow(\exists y) \text { loves }(x, y)
$$

Quantifier Scope

- Switching order of universal quantifiers does not change the meaning
$-(\forall \mathrm{x})(\forall \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \leftrightarrow(\forall \mathrm{y})(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$
- Dogs hate cats (i.e., all dogs hate all cats)
- You can switch order of existential quantifiers
$-(\exists x)(\exists y) P(x, y) \leftrightarrow(\exists y)(\exists x) P(x, y)$
- A cat killed a dog
- Switching order of universal and existential quantifiers does change meaning:
- Everyone likes someone: $(\forall x)(\exists y)$ likes (x, y)
- Someone is liked by everyone: $(\exists \mathrm{y})(\forall \mathrm{x})$ likes (x, y)

def verify1():

Procedural example 1

\# Everyone likes someone: $(\forall x)(\exists y)$ likes (x, y) for p1 in people():
foundLike $=$ False
for p 2 in people():
if likes(p1, p2):
foundLike = True break

Every person has at least one individual that they like.

if not foundLike:
print(p1, 'does not like anyone $:^{\circ}$) return False return True

def verify2():

Procedural example 2

\# Someone is liked by everyone: $(\exists y)(\forall x)$ likes (x, y) for p 2 in people():
foundHater = False
for p 1 in people():
if not likes(p1, p2):
foundHater = True
break
There is a person who is
liked by every person in the universe.
if not foundHater print(p2, 'is liked by everyone © ${ }^{\text {' }}$) return True return False

Connections between \forall and \exists

- We can relate sentences involving \forall and \exists using extensions to De Morgan's laws:

1. $(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$
2. $\neg(\forall x) P(x) \leftrightarrow(\exists x) \neg P(x)$
3. $(\forall x) P(x) \leftrightarrow \neg(\exists x) \neg P(x)$
4. $(\exists x) P(x) \leftrightarrow \neg(\forall x) \neg P(x)$

- Examples

1. All dogs don’t like cats \leftrightarrow No dog likes cats
2. Not all dogs bark \leftrightarrow There is a dog that doesn't bark
3. All dogs sleep \leftrightarrow There is no dog that doesn't sleep
4. There is a dog that talks \leftrightarrow Not all dogs can't talk

Notational differences

- Different symbols for and, or, not, implies, ...
$-\forall \exists \Rightarrow \Leftrightarrow \wedge \vee \neg \bullet \supset$
$-p \vee\left(q^{\wedge} r\right)$
$-p+\left(q^{*} r\right)$
- Prolog
cat(X) :- furry (X), meows (X), has(X, claws)
- Lispy notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))
(cat ?x)))

Translating English to FOL

Every gardener likes the sun
$\forall x$ gardener $(x) \rightarrow$ likes $(x$, Sun $)$
All purple mushrooms are poisonous
$\forall x($ mushroom $(x) \wedge$ purple $(x)) \rightarrow$ poisonous (x)
No purple mushroom is poisonous (two ways)
$\neg \exists \mathrm{x}$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{x}) \wedge$ poisonous (x)
$\forall \mathrm{x}($ mushroom $(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow \neg$ poisonous (x)

Translating English to FOL

There are (at least) two purple mushrooms
$\exists x \exists y$ mushroom $(x) \wedge$ purple $(x) \wedge$ mushroom $(y) \wedge$ purple(y) $\wedge \neg(x=y)$

There are exactly two purple mushrooms $\exists x \exists y$ mushroom $(x) \wedge$ purple $(x) \wedge$ mushroom $(y) \wedge$ purple $(y) \wedge \neg(x=y) \wedge$
$\forall z($ mushroom $(z) \wedge$ purple $(z)) \rightarrow((x=z) \vee(y=z))$
Trump is not short
\neg short(Trump)

Translating English to FOL

What do these mean?

- You can fool some of the people all of the time
- You can fool all of the people some of the time

Translating English to FOL

What do these mean?
Both English statements are ambiguous

- You can fool some of the people all of the time

There is a nonempty subset of people so easily fooled that you can fool that subset every time*
For any given time, there is a non-empty subset at that time that you can fool

- You can fool all of the people some of the time

There are one or more times when it's possible to fool everyone*
Everybody can be fooled at some point in time

Some terms we will need

- person(x): True iff x is a person
- time(t): True iff t is a point in time
- canFool(x, t): True iff x can be fooled at time t

Note: iff $=$ if and only if $=\leftrightarrow$

Translating English to FOL

You can fool some of the people all of the time

There is a nonempty group of people so easily fooled that you can fool that group every time*
\equiv There's a person that you can fool every time
$\exists \mathrm{x} \forall \mathrm{t}$ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \rightarrow \operatorname{canFool}(\mathrm{x}, \mathrm{t})$

For any given time, there is a non-empty group at that time that you can fool
三 For every time, there is a person at that time that you can fool
$\forall \mathrm{t} \exists \mathrm{x}$ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \rightarrow \operatorname{canFool}(\mathrm{x}, \mathrm{t})$

Translating English to FOL

You can fool all of the people some of the time

There are one or more times when it's possible to fool everyone*
$\exists \mathrm{t} \forall \mathrm{x}$ time $(\mathrm{t}) \wedge$ person $(\mathrm{x}) \rightarrow \operatorname{canFool}(\mathrm{x}, \mathrm{t})$

Everybody can be fooled at some point in time
$\forall \mathrm{x} \exists \mathrm{t}$ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \rightarrow \operatorname{canFool}(\mathrm{x}, \mathrm{t})$

Simple genealogy KB in FOL

Design a knowledge base using FOL that

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Defines of more complex relations (ancestors, relatives)
- Detect conflicts, e.g., you are your own parent
- Infers relations, e.g., grandparent from parent
- Answers queries about relationships between people

How do we approach this?

- Design an initial ontology of types, e.g. -e.g., person, man, woman, male, female
- Extend ontology by defining relations, e.g.
- spouse, has_child, has_parent
- Add general constraints to relations, e.g.
- spouse $(X, Y)=>\sim X=Y$
-spouse $(X, Y)=>$ person (X), person (Y)
- Add FOL sentences for inference, e.g.
- spouse $(X, Y) \Leftrightarrow$ spouse (Y, X)
$-\operatorname{man}(X) \Leftrightarrow \operatorname{person}(X) \wedge$ male (X)

Example: A simple genealogy KB by FOL

- Predicates:
- parent (x, y), child (x, y), father (x, y), daughter (x, y), etc.
$-\operatorname{spouse}(x, y)$, husband(x, y), wife (x, y)
- ancestor(x, y), descendant(x, y)
-male(x), female(y)
- relative (x, y)
- Facts:
- husband(Joe, Mary), son(Fred, Joe)
-spouse(John, Nancy), male(John), son(Mark, Nancy)
- father(Jack, Nancy), daughter(Linda, Jack)
-daughter(Liz, Linda)
-etc.

Example Axioms

($\forall \mathrm{x}, \mathrm{y}$) parent $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ child (y, x) $(\forall x, y)$ father $(x, y) \leftrightarrow \operatorname{parent}(x, y) \wedge$ male $(x) ; \operatorname{similar}$ for mother $(x, \chi$ $(\forall \mathrm{x}, \mathrm{y})$ daughter $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{child}(\mathrm{x}, \mathrm{y}) \wedge$ female $(\mathrm{x}) ; \operatorname{similar}$ for $\operatorname{son}(\mathrm{x}, \mathrm{y})$ $(\forall x, y)$ husband $(x, y) \leftrightarrow \operatorname{spouse}(x, y) \wedge$ male $(x) ; \operatorname{similar}$ for wife (x, y) ($\forall \mathrm{x}, \mathrm{y})$ spouse $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ spouse (y, x);spouse relation is symmetric ($\forall \mathrm{x}, \mathrm{y})$ parent $(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z}) \operatorname{parent}(\mathrm{x}, \mathrm{z}) \wedge \operatorname{ancestor}(\mathrm{z}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$ ($\forall \mathrm{x}, \mathrm{y}$) descendant $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ ancestor (y, x) $(\forall x, y)(\exists \mathrm{z})$ ancestor $(\mathrm{z}, \mathrm{x}) \wedge$ ancestor $(\mathrm{z}, \mathrm{y}) \rightarrow$ relative (x, y) $(\forall x, y)$ spouse $(x, y) \rightarrow$ relative (x, y);related by marriage $(\forall x, y)(\exists z)$ relative $(z, x) \wedge$ relative $(z, y) \rightarrow$ relative $(x, y) ;$ transitive ($\forall \mathrm{x}, \mathrm{y}$) relative $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ relative (y, x);symmetric

Axioms, definitions and theorems

- Axioms: facts and rules that capture (important) facts \& concepts in a domain; axioms are used to prove theorems
- Mathematicians dislike unnecessary (dependent) axioms, i.e. ones that can be derived from others
- Dependent axioms can make reasoning faster, however
- Choosing a good set of axioms is a design problem
- A definition of a predicate is of the form " $p(X) \leftrightarrow$..." and can be decomposed into two parts
- Necessary description: " $p(x) \rightarrow$..."
- Sufficient description " $p(x) \leftarrow$..."
- Some concepts have definitions (e.g., triangle) and some don't (e.g., person)

More on definitions

Example: define father(x, y) by parent (x, y) and male(x)

- parent(\mathbf{x}, y) is a necessary (but not sufficient) description of father(x, y)
father $(x, y) \rightarrow \operatorname{parent}(x, y)$
- parent $(x, y)^{\wedge}$ male($\left.x\right)^{\wedge}$ age($(x, 35)$ is a sufficient (but not necessary) description of father (x, y):
father $(x, y) \leftarrow \operatorname{parent}(x, y)^{\wedge}$ male $(x)^{\wedge}$ age $(x, 35)$
- parent $(x, y)^{\wedge}$ male(\mathbf{x}) is a necessary and sufficient description of father (x, y) parent $(\mathrm{x}, \mathrm{y})^{\wedge}$ male $(\mathrm{x}) \leftrightarrow$ father (x, y)

More on definitions

$S(x)$ is a
necessary
condition of $P(x)$
$S(x)$ is a
sufficient
condition of $P(x)$
$S(x)$ is a
necessary and
sufficient
condition of $P(x)$

\# all Ps are Ss $(\forall x) P(x)<=S(x)$
\# all Ps are Ss \# all Ss are Ps $(\forall x) P(x)<=>S(x)$

Higher-order logic

- FOL only lets us quantify over variables, and variables can only range over objects
- HOL allows us to quantify over relations, e.g. "two functions are equal iff they produce the same value for all arguments"
$\forall \mathrm{f} \forall \mathrm{g}(\mathrm{f}=\mathrm{g}) \leftrightarrow(\forall \mathrm{xf}(\mathrm{x})=\mathrm{g}(\mathrm{x}))$
- E.g.: (quantify over predicates)
$\forall r$ transitive $(r) \rightarrow(\forall x y z) r(x, y) \wedge r(y, z) \rightarrow r(x, z))$
- More expressive, but reasoning is undecideable, in general

Expressing uniqueness

- Often want to say that there is a single, unique object that satisfies a condition
- There exists a unique x such that king (x) is true
$-\exists x \operatorname{king}(x) \wedge \forall y($ king $(y) \rightarrow x=y)$
$-\exists x \operatorname{king}(x) \wedge \neg \exists y(\operatorname{king}(y) \wedge x \neq y)$
- \exists ! x king(x)
- Every country has exactly one ruler
- $\forall c$ country(c) $\rightarrow \exists$! r ruler(c,r)
- lota operator: $\mathrm{i} \times \mathrm{P}(\mathrm{x})$ means "the unique x such that $p(x)$ is true"
- The unique ruler of Freedonia is dead
- dead(ı x ruler(freedonia, x$)$)

Examples of FOL in use

- Semantics of W3C's Semantic Web stack (RDF, RDFS, OWL) is defined in FOL
- OWL Full is equivalent to FOL
- Other OWL profiles support a subset of FOL and are more efficient
-The semantics of schema.org is only defined in natural language text
- Wikidata's knowledge graph (and Google's) has a richer schema

FOL Summary

- First order logic (FOL) introduces predicates, functions and quantifiers
- More expressive, but reasoning more complex - Reasoning in propositional logic is NP hard, FOL is semi-decidable
- Common Al knowledge representation language -Other KR languages (e.g., OWL) are often defined by mapping them to FOL
- FOL variables range over objects
- HOL variables range over functions, predicates or sentences

