Adversarial Search

(aka Games)

Chapter 5

Why study games?

- Interesting, hard problems requiring minimal "initial structure"
- Clear criteria for success
- Study problems involving \{hostile, adversarial, competing $\}$ agents and uncertainty of interacting with the natural world
- People have used them to assess their intelligence
- Fun, good, easy to understand, PR potential
- Games often define very large search spaces, e.g. chess 35^{100} nodes in search tree, 10^{40} legal states

Chess early days

- 1948: Norbert Wiener describes how chess program can work using minimax search with an evaluation function
- 1950: Claude Shannon publishes Programming a Computer for Playing Chess
- 1951: Alan Turing develops on paper 1st program capable of playing full chess game
- 1958: 1st program plays full game on IBM 704 (loses)
- 1962: Kotok \& McCarthy (MIT) 1st program to play credibly
- 1967: Greenblatt's Mac Hack Six (MIT) defeats a person in regular tournament play

State of the art

- 1979 Backgammon: BKG (CMU) tops world champ
- 1994 Checkers: Chinook is the world champion
- 1997 Chess: IBM Deep Blue beat Gary Kasparov
- 2007 Checkers: solved (it's a draw)
- 2016 Go: $\underline{\text { AlphaGo }}$ beat champion Lee Sedol
- 2017 Poker: CMU's Libratus won \$1.5M from 4 top poker players in 3-week challenge in casino
- 20?? Bridge: Expert bridge programs exist, but no world champions yet
- Check out the U. Alberta Games Group

How can

 we do it?
Classical vs. Statistical approach

- We'll look first at the classical approach used from the 1940s to 2010
-Then at newer statistical approached of which AlphaGo is an example
- These share some techniques

Typical simple case for a game

- 2-person game
- Players alternate moves
- Zero-sum: one player's loss is the other's gain
- Perfect information: both players have access to complete information about state of game. No information hidden from either player
- No chance (e.g., using dice) involved
- Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- But not: Bridge, Solitaire, Backgammon, Poker, Rock-Paper-Scissors, ...

Can we use ...

- Uninformed search?
- Heuristic search?
- Local search?
- Constraint based search?

None of these model the fact that we have an adversary ...

How to play a game

- A way to play such a game is to:
-Consider all the legal moves you can make
-Compute new position resulting from each move
-Evaluate each to determine which is best
-Make that move
- Wait for your opponent to move and repeat
- Key problems are:
-Representing the "board" (i.e., game state)
-Generating all legal next boards
-Evaluating a position

Evaluation function

- Evaluation function or static evaluator used to evaluate the "goodness" of a game position
Contrast with heuristic search, where evaluation function is estimate of cost from start node to goal passing through given node
- Zero-sum assumption permits single function to describe goodness of board for both players
$-\mathbf{f}(\mathbf{n}) \gg 0$: position n good for me; bad for you
$-\mathbf{f}(\mathbf{n}) \ll \mathbf{0}$: position n bad for me; good for you
$-\mathbf{f}(\mathbf{n})$ near 0: position n is a neutral position
$-\mathbf{f}(\mathbf{n})=+$ infinity: win for me
$-\mathbf{f}(\mathbf{n})=$-infinity: win for you

Evaluation function examples

- For Tic-Tac-Toe
$\mathrm{f}(\mathrm{n})=$ [\# my open 3lengths] - [\# your open 3lengths]
Where 3length is complete row, column or diagonal and an open one has no opponent marks
- Alan Turing's function for chess
$-\mathbf{f}(\mathbf{n})=\mathbf{w}(\mathbf{n}) / \mathbf{b}(\mathbf{n})$ where $\mathrm{w}(\mathrm{n})=$ sum of point value of white's pieces and $b(n)=$ sum of black's
- Traditional piece values: pawn:1; knight:3; bishop:3; rook:5; queen:9

Evaluation function examples

- Most evaluation functions specified as a weighted sum of positive features

$$
\mathrm{f}(\mathrm{n})=\mathrm{w}_{1} * \text { feat }_{1}(\mathrm{n})+\mathrm{w}_{2} * \text { feat }_{2}(\mathrm{n})+\ldots+\mathrm{w}_{\mathrm{n}} * \text { feat }_{\mathrm{k}}(\mathrm{n})
$$

- Example features for chess are piece count, piece values, piece placement, squares controlled, etc.
- IBM's chess program Deep Blue (circa 1996) had $>8 \mathrm{~K}$ features in its evaluation function

But, that's not how people play

- People use look ahead
i.e., enumerate actions, consider opponent's possible responses, REPEAT
- Producing a complete game tree is only possible for simple games
- So, generate a partial game tree for some number of plys
-Move = each player takes a turn
-Ply = one player's turn
- What do we do with the game tree?

- We can easily imagine generating a complete game tree for Tic-Tac-Toe
- Taking board symmetries into account, there are 138 terminal positions

- 91 wins for $\mathrm{X}, 44$ for O and 3 draws

Game trees

- Problem spaces for typical games are trees
- Root node is current board configuration; player must decide best single move to make next
- Static evaluator function rates board position f(board): real, >0 for me; <0 for opponent
- Arcs represent possible legal moves for a player
- If my turn to move, then root is labeled a "MAX" node; otherwise it's a "MIN" node
- Each tree level's nodes are all MAX or all MIN; nodes at level i are of opposite kind from those at level i+1

Game Tree for Tic-Tac-Toe

Minimax procedure

- Create MAX node with current board configuration
- Expand nodes to some depth (a.k.a. plys) of lookahead in game
- Apply evaluation function at each leaf node
- Back up values for each non-leaf node until value is computed for the root node
- At MIN nodes: value is minimum of children's values
- At MAX nodes: value is maximum of children's values
- Choose move to child node whose backed-up value determined value at root

Minimax theorem

- Intuition: assume your opponent is at least as smart as you and play accordingly
- If she's not, you can only do better!
- Von Neumann, J: Zur Theorie der Gesellschaftsspiele Math. Annalen. 100 (1928) 295-320
For every 2-person, 0 -sum game with finite strategies, there is a value V and a mixed strategy for each player, such that (a) given player 2's strategy, best payoff possible for player 1 is V, and (b) given player 1's strategy, best payoff possible for player 2 is $-V$.
- You can think of this as:
-Minimizing your maximum possible loss
-Maximizing your minimum possible gain

Minimax Algorithm

Partial Game Tree for Tic-Tac-Toe

Why use backed-up values?

- Intuition: if evaluation function is good, doing look ahead and backing up values with Minimax should be better
- Non-leaf node N's backed-up value is value of best state MAX can reach at depth \mathbf{h} if MIN plays well
- "plays well": same criterion as MAX applies to itself
- If e is good, then backed-up value is better estimate of $\operatorname{sTATE}(\mathrm{N})$ goodness than e(STATE (N))
- Use lookup horizon \mathbf{h} because time to choose move is limited

Minimax Tree

MAX

$\mathrm{M} \mid \mathbb{N}$

Is that all there is to simple games?

Alpha-beta pruning

- Improve performance of the minimax algorithm through alpha-beta pruning
- "If you have an idea that is surely bad, don't take the time to see how truly awful it is "-Pat Winston

Alpha-beta pruning

- Traverse search tree in depth-first order
- At MAX node n , $\operatorname{alpha(n)}=$ max value found so far Alpha values start at $-\infty$ and only increase
- At MIN node n, $\boldsymbol{b e t a}(\mathbf{n})=$ min value found so far

Beta values start at $+\infty$ and only decrease

- Beta cutoff: stop search below MAX node N (i.e., don't examine more children) if alpha(N) $>=$ beta(i) for some MIN node ancestor i of N
- Alpha cutoff: stop search below MIN node N if beta(N)<=alpha(i) for a MAX node ancestor i of N

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

[^0]
Alpha-Beta Tic-Tac-Toe Example

Beta value of a MIN node is upper bound on final backed-up value; it can never increase

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

Another alpha-beta example

Alpha-Beta Tic-Tac-Toe Example 2

With alpha-beta we avoided computing a static evaluation metric for 14 of the 25 leaf nodes

Effectiveness of alpha-beta

- Alpha-beta guaranteed to compute same value for root node as minimax, but with \leq computation
- Worst case: no pruning, examine b^{d} leaf nodes, where nodes have b children \& d-ply search is done
- Best case: examine only $(2 b)^{\mathrm{d} / 2}$ leaf nodes
- You can search twice as deep as minimax!
-Occurs if each player's best move is 1st alternative
- In DeepBlue's alpha-beta pruning, average branching factor at node was ~ 6 instead of ~ 35 !

Other Improvements

- Adaptive horizon + iterative deepening
- Extended search: retain $\mathrm{k}>1$ best paths (not just one) extend tree at greater depth below their leaf nodes to help dealing with "horizon effect"
- Singular extension: If move is obviously better than others in node at horizon h, expand it
- Use transposition tables to deal with repeated states
- Null-move search: assume player forfeits move; do shallow analysis of tree; result must surely be worse than if player had moved. Can recognize moves that should be explored fully.

[^0]: Beta value of a MIN node is upper bound on final backed-up value; it can never increase

