Constraint Satisfaction

Russell & Norvig Ch. 6
Overview

• Constraint satisfaction is a powerful problem-solving paradigm
 – Problem: set of variables to which we must assign values satisfying problem-specific constraints
 – Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...

• Algorithms for CSPs
 – Backtracking (systematic search)
 – Constraint propagation (k-consistency)
 – Variable and value ordering heuristics
 – Backjumping and dependency-directed backtracking
Motivating example: 8 Queens

Place 8 queens on a chess board such that none is attacking another.

\[8^{8} \text{ is } 16,777,216 \]
Motivating example: 8-Queens

After placing these two queens, it’s trivial to mark the squares we can no longer use.
What more do we need for 8 queens?

• Not just a successor function and goal test
• But also
 – a means to propagate constraints imposed by one queen on others
 – an early failure test
→ Explicit representation of constraints and constraint manipulation algorithms
Informal definition of CSP

• CSP (Constraint Satisfaction Problem), given
 (1) finite set of variables
 (2) each with domain of possible values (often finite)
 (3) set of constraints limiting values variables can take
• Solution: assignment of a value to each variable such that all constraints are satisfied
• Possible tasks: decide if solution exists, find a solution, find all solutions, find best solution according to some metric (objective function)
Example: 8-Queens Problem

- Eight variables Q_i, $i = 1..8$ where Q_i is the row number of queen in column i
- Domain for each variable $\{1,2,...,8\}$
- Constraints are of the forms:
 - No queens on same row
 $Q_i = k \implies Q_j \neq k$ for $j = 1..8, j \neq i$
 - No queens on same diagonal
 $Q_i=\text{row}_i, Q_j=\text{row}_j \implies |i-j| \neq |\text{row}_i-\text{row}_j|$ for $j = 1..8, j \neq i$
Example: Task Scheduling

Examples of scheduling constraints:
• T1 must be done during T3
• T2 must be achieved before T1 starts
• T2 must overlap with T3
• T4 must start after T1 is complete
Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color.
Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints: A ≠ B, A ≠ C, A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
- A solution: A=red, B=green, C=blue, D=green, E=blue
Brute Force methods

• Finding a solution by a brute force search is easy
 – Generate and test is a \textit{weak method}
 – Just generate potential combinations and test each
• Potentially very inefficient
 – With \(n \) variables where each can have one of 3 values, there are \(3^n \) possible solutions to check
• There are \(\sim 190 \) countries in the world, which we can color using four colors
• \(4^{190} \) is a big number!

\begin{verbatim}
solve(A,B,C,D,E) :-
color(A),
color(B),
color(C),
color(D),
color(E),
not(A=B),
not(A=B),
not(B=C),
not(A=C),
not(C=D),
not(A=E),
not(C=D).
\end{verbatim}

color(red).
color(green).
color(blue).
Example: SATisfiability

• Given a set of logic propositions containing variables, find an assignment of the variables to \{false, true\} that satisfies them.

• For example, the two clauses:
 \[- (A \lor B \lor \neg C) \land (\neg A \lor D)\]
 \[-equivalent to (C \rightarrow A) \lor (B \land D \rightarrow A)\]

are satisfied by
 \[A = false, B = true, C = false, D = false\]

• **Satisfiability** is known to be **NP-complete**, so in worst case, solving CSP problems requires exponential time.
Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design
Definition of a constraint network (CN)

A constraint network (CN) consists of

• Set of variables \(X = \{x_1, x_2, \ldots, x_n\} \)
 – with associate domains \(\{d_1, d_2, \ldots, d_n\} \)
 – domains are typically finite

• Set of constraints \(\{c_1, c_2, \ldots, c_m\} \) where
 – each defines a predicate that is a relation over a particular subset of variables \(X \)
 – e.g., \(C_i \) involves variables \(\{X_{i1}, X_{i2}, \ldots, X_{ik}\} \) and defines the relation \(R_i \subseteq D_{i1} \times D_{i2} \times \ldots \times D_{ik} \)
Running example: coloring Australia

- Seven variables: \{WA, NT, SA, Q, NSW, V, T\}
- Each variable has same domain: \{red, green, blue\}
- No two adjacent variables can have same value:
 \(WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, SA \neq Q, SA \neq NSW, SA \neq V, Q \neq NSW, NSW \neq V\)
Unary & binary constraints most common

Binary constraints

- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints
Formal definition of a CN

• Instantiations
 – An instantiation of a subset of variables S is an assignment of a value (in its domain) to each variable in S
 – An instantiation is legal iff it violates no constraints

• A solution is a legal instantiation of all variables in the network
Typical tasks for CSP

• Solution related tasks:
 – Does a solution exist?
 – Find one solution
 – Find all solutions
 – Given a metric on solutions, find best one
 – Given a partial instantiation, do any of above

• Transform the CN into an equivalent CN that is easier to solve
Binary CSP

• A binary CSP is a CSP where all constraints are binary or unary

• Any non-binary CSP can be converted into a binary CSP by introducing additional variables

• A binary CSP can be represented as a constraint graph, with a node for each variable and an arc between two nodes iff there’s a constraint involving them
 – Unary constraints appear as self-referential arcs
Running example: coloring Australia

- Seven variables: \{WA, NT, SA, Q, NSW, V, T\}
- Each variable has same domain: \{red, green, blue\}
- No two adjacent variables can have same value:
 WA\neq NT, WA\neq SA, NT\neq SA, NT\neq Q, SA\neq Q, SA\neq NSW,
 SA\neq V, Q\neq NSW, NSW\neq V
A running example: coloring Australia

- Solutions: complete & consistent assignments
- Here is one of several solutions
- For generality, constraints can be expressed as relations, e.g., describe \(WA \neq NT \) a
 \[\{ (\text{red,green}), (\text{red,blue}), (\text{green,red}), (\text{green,blue}), (\text{blue,red}), (\text{blue,green}) \} \]
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)
 – If a is complete then return a
 – X ← select an unassigned variable
 – D ← select an ordering for the domain of X
 – For each value v in D do
 If v is consistent with a then
 – Add (X= v) to a
 – result ← CSP-BACKTRACKING(a)
 – If result ≠ failure then return result
 – Remove (X= v) from a
 – Return failure

Start with CSP-BACKTRACKING({})

Note: this is depth first search; can solve n-queens problems for n ~ 25
Problems with backtracking

• Thrashing: keep repeating the same failed variable assignments

• Things that can help avoid this:
 – Consistency checking
 – Intelligent backtracking schemes

• Inefficiency: can explore areas of the search space that aren’t likely to succeed
 – Variable ordering can help
Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking

– Can we detect inevitable failure early?
– Which variable should be assigned next?
– In what order should its values be tried?
Forward Checking

After variable X is assigned to value v, examine each unassigned variable Y connected to X by a constraint and delete values from Y's domain inconsistent with v

Using forward checking and backward checking roughly doubles the size of N-queens problems that can be practically solved
Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking
Forward checking
Forward checking

SA (South Australia) domain is empty!
Constraint propagation

- Forward checking propagates info. from assigned to unassigned variables, but doesn't provide early detection for all failures.
- NT and SA cannot both be blue!

Can we detect problem earlier?
Definition: Arc consistency

• A constraint C_{xy} is arc consistent w.r.t. x if for each value v of x there is an allowed value of y
• Similarly define C_{xy} as arc consistent w.r.t. y
• Binary CSP is arc consistent iff every constraint C_{xy} is arc consistent w.r.t. x as well as y
• When a CSP is not arc consistent, we can make it arc consistent by using the AC3 algorithm
 – Also called “enforcing arc consistency”
Arc Consistency Example 1

- **Domains**
 - $D_x = \{1, 2, 3\}$
 - $D_y = \{3, 4, 5, 6\}$

- **Constraint**
 - Note: for finite domains, we can represent a constraint as an set of legal value pairs
 - $C_{xy} = \{(1,3), (1,5), (3,3), (3,6)\}$

- C_{xy} isn’t arc consistent w.r.t. x or y. By enforcing arc consistency, we get reduced domains
 - $D'_x = \{1, 3\}$
 - $D'_y = \{3, 5, 6\}$
Arc Consistency Example 2

• Domains
 – \(D_x = \{1, 2, 3\}\)
 – \(D_y = \{1, 2, 3\}\)

• Constraint
 – \(C_{xy} = \lambda v1,v2: v1 < v2\)

• \(C_{xy}\) is not arc consistent w.r.t. \(x\) or \(y\). By enforcing arc consistency, we get reduced domains:
 – \(D'_x = \{1, 2\}\)
 – \(D'_y = \{2, 3\}\)
Aside: Python lambda expressions

Previous slide expressed constraint between two variables as an anonymous Python function taking two arguments

\[
\text{lambda } v1, v2: v1 < v2
\]

```python
>>> f = lambda v1, v2: v1 < v2
>>> f
<function <lambda> at 0x10fcf21e0>
>>> f(100, 200)
True
>>> f(200, 100)
False
```

Python uses lambda after Alonzo Church’s lambda calculus from the 1930s
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x_i of X there is some allowed value y_j in Y
Arc consistency

• Simplest form of propagation makes each arc consistent

• $X \rightarrow Y$ is consistent iff for every value x_i of X there is some allowed value y_j in Y
Arc consistency

If X loses a value, neighbors of X need to be rechecked
Arc consistency

- Arc consistency detects failure earlier than simple forward checking
- WA=red and Q=green is quickly recognized as a deadend, i.e. an impossible partial instantiation
- The arc consistency algorithm can be run as a preprocessor or after each assignment
Algorithm AC3
contradiction ← false
Q ← stack of all variables
while Q is not empty and not contradiction do
 X ← UNSTACK(Q)
 For every variable Y adjacent to X do
 If REMOVE-ARC-INCONSISTENCIES(X,Y)
 If domain(Y) is non-empty then STACK(Y,Q)
 else return false
Complexity of AC3

• $e =$ number of constraints (edges)
• $d =$ number of values per variable
• Each variable is inserted in queue up to d times
• REMOVE-ARC-INCONSISTENCY takes $O(d^2)$ time
• CP takes $O(ed^3)$ time
Improving backtracking efficiency

• Some standard techniques to improve the efficiency of backtracking
 – Can we detect inevitable failure early?
 – Which variable should be assigned next?
 – In what order should its values be tried?

• Combining constraint propagation with these heuristics makes 1000-queen puzzles feasible
Most constrained variable

• Most constrained variable: choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic

• After assigning value to WA, both NT and SA have only two values in their domains
 – choose one of them rather than Q, NSW, V or T
Most constraining variable

• Tie-breaker among most constrained variables
• Choose variable involved in largest # of constraints on remaining variables

After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
• WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW
Most constraining variable

• Tie-breaker among most constrained variables
• Choose variable involved in largest # of constraints on remaining variables

After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
• WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW
Least constraining value

• Given a variable, choose least constraining value:
 – the one that rules out the fewest values in the remaining variables

• Combining these heuristics makes 1000 queens feasible

• What’s an intuitive explanation for this?
Is AC3 Alone Sufficient?

Consider the four queens problem

![Diagram of the four queens problem]
Solving a CSP still requires search

• Search:
 – can find good solutions, but must examine non-solutions along the way

• Constraint Propagation:
 – can rule out non-solutions, but this is not the same as finding solutions

• Interweave constraint propagation & search:
 – perform constraint propagation at each search step
4-Queens Problem
4-Queens Problem

\[
\begin{align*}
X_1 & \{1,2,3,4\} \\
X_2 & \{1,2,3,4\} \\
X_3 & \{1,2,3,4\} \\
X_4 & \{1,2,3,4\}
\end{align*}
\]
$X_2 = 3$ eliminates $\{X_3=2, X_3=3, X_3=4\}$
\Rightarrow inconsistent!
X2=4 ⇒ X3=2, which eliminates \{ X4=2, X4=3\} ⇒ inconsistent!
4-Queens Problem

X1 can’t be 1, let’s try 2
4-Queens Problem

Can we eliminate any other values?
4-Queens Problem

X1 \{2,3,4\}
X2 \{3,4\}
X3 \{1\}
X4 \{1,3,4\}
Arc constancy eliminates x3 = 3 because it’s not consistent with X2’s remaining values.
There is only one solution with $X_1=2$
Sudoku Example

initial problem

How can we set this up as a CSP?

a solution
Sudoku

• Digit placement puzzle on 9x9 grid with unique answer
• Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
• Each column, row, and nine 3 × 3 sub-grids must contain all nine digits

• Some initial configurations are easy to solve and some very difficult
def sudoku(initValue):
 p = Problem()
 # Define a variable for each cell: 11,12,13...21,22,23...98,99
 for i in range(1, 10):
 p.addVariables(range(i*10+1, i*10+10), range(1, 10))
 # Each row has different values
 for i in range(1, 10):
 p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
 # Each column has different values
 for i in range(1, 10):
 p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
 # Each 3x3 box has different values
 p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
 p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
 p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
 p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
 p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
 p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
 p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
 p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
 p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
 # add unary constraints for cells with initial non-zero values
 for i in range(1, 10):
 for j in range(1, 10):
 value = initValue[i-1][j-1]
 if value:
 p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
 return p.getSolution()

Sample problems
easy = [
 [0,0,9,7,0,0,8,6,0],
 [0,3,1,0,0,5,0,2,0],
 [8,0,6,0,0,0,0,0,0],
 [0,0,7,0,5,0,0,0,6],
 [0,0,0,3,0,7,0,0,0],
 [5,0,0,0,1,0,7,0,0],
 [0,0,0,0,0,1,0,9,0],
 [0,2,0,6,0,0,0,5,0],
 [0,5,4,0,0,8,0,7,0]]

hard = [
 [0,0,3,0,0,0,4,0,0],
 [0,0,0,7,0,0,0,0,0],
 [5,0,0,4,0,6,0,0,2],
 [0,0,4,0,0,0,8,0,0],
 [0,9,0,0,3,0,0,2,0],
 [0,7,0,0,0,5,0,0,0],
 [6,0,0,5,0,2,0,0,1],
 [0,0,0,9,0,0,0,0,0],
 [0,9,0,0,0,3,0,0,0]]

very_hard = [
 [0,0,0,0,0,0,0,0,0],
 [0,0,9,0,6,0,3,0,0],
 [0,7,0,3,0,4,0,9,0],
 [0,0,7,2,0,8,6,0,0],
 [0,4,0,0,0,0,7,0,0],
 [0,2,1,0,6,5,0,0,0],
 [0,1,0,9,0,5,0,4,0],
 [0,0,8,0,2,0,7,0,0],
 [0,0,0,0,0,0,0,0,0]]
Local search for constraint problems

• Remember local search?
• There’s a version of local search for CSP problems
• Basic idea:
 – generate a random “solution”
 – Use metric of “number of conflicts”
 – Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
• Has all features and problems of local search like....?
Min Conflict Example

• **States:** 4 Queens, 1 per column
• **Operators:** Move a queen in its column
• **Goal test:** No attacks
• **Evaluation metric:** Total number of attacks

How many conflicts does each state have?
Basic Local Search Algorithm

Assign one domain value d_i to each variable v_i
while no solution & not stuck & not timed out:

 bestCost $\leftarrow \infty$; bestList $\leftarrow []$;
 for each variable $v_i \mid \text{Cost(Value}(v_i)) > 0$
 for each domain value d_i of v_i
 if Cost(d_i) < bestCost
 bestCost $\leftarrow \text{Cost}(d_i)$; bestList $\leftarrow [d_i]$;
 else if Cost(d_i) = bestCost
 bestList \leftarrow bestList $\cup d_i$
 Take a randomly selected move from bestList
Eight Queens using Backtracking

Undo move for Queen 7 and so on...
Eight Queens using Local Search

Answer Found
Local Search Performance

Time in seconds

Number of Queens
Min Conflict Performance

• Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution

• Min Conflict often has astounding performance

• Can solve arbitrary size (i.e., millions) N-Queens problems in constant time

• Appears to hold for arbitrary CSPs with the caveat...
Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.
Famous example: labeling line drawings

- **Waltz** labeling algorithm, earliest AI CSP application (1972)
 - Convex interior lines labeled as +
 - Concave interior lines labeled as –
 - Boundary lines labeled as with background to left
- 208 labeling possible labelings, but only 18 are legal
Labeling line drawings II

Here are some illegal labelings

\[+ + \quad + \quad - - \]
Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

solution for one labeling problem

labeling problem with no solution
Shadows add complexity

CSP was able to label scenes where some of the lines were caused by shadows
Challenges for constraint reasoning

• What if not all constraints can be satisfied?
 – Hard vs. soft constraints vs. preferences
 – Degree of constraint satisfaction
 – Cost of violating constraints

• What if constraints are of different forms?
 – Symbolic constraints
 – Logical constraints
 – Numerical constraints [constraint solving]
 – Temporal constraints
 – Mixed constraints
Challenges for constraint reasoning

• What if constraints are represented intentionally?
 – Cost of evaluating constraints (time, memory, resources)

• What if constraints, variables, and/or values change over time?
 – Dynamic constraint networks
 – Temporal constraint networks
 – Constraint repair

• What if multiple agents or systems are involved in constraint satisfaction?
 – Distributed CSPs
 – Localization techniques