

Overview

- Constraint satisfaction is a powerful problemsolving paradigm
 - Problem: set of variables to which we must assign values satisfying problem-specific constraints
 - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
 - Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

Place 8 queens on a chess board such That none is attacking another.

Generate-and-test, with no redundancies \rightarrow "only" 8⁸ combinations

8**8 is 16,777,216

Motivating example: 8-Queens

After placing these two queens, it's trivial to mark the squares we can no longer use

What more do we need for 8 queens?

- Not just a successor function and goal test
- But also
 - a means to propagate constraints imposed by one queen on others
 - an early failure test
- Explicit representation of constraints and constraint manipulation algorithms

Informal definition of CSP

- CSP (<u>Constraint Satisfaction Problem</u>), given
 - (1) finite set of variables
 - (2) each with domain of possible values (often finite)
 - (3) set of constraints limiting values variables can take
- Solution: assignment of a value to each variable such that all constraints are satisfied
- Possible tasks: decide if solution exists, find a solution, find all solutions, find *best solution* according to some metric (objective function)

Example: 8-Queens Problem

- Eight variables Qi, i = 1..8 where Qi is the row number of queen in column i
- Domain for each variable {1,2,...,8}
- Constraints are of the forms:
 - -No queens on same row Qi = k \rightarrow Qj \neq k for j = 1..8, j \neq i
 - –No queens on same diagonal Qi=rowi, Qj=rowj → |i-j|≠|rowi-rowj| for j = 1..8, j≠i

Example: Task Scheduling

Examples of scheduling constraints:

- T1 must be done during T3
- T2 must be achieved before T1 starts
- T2 must overlap with T3
- T4 must start after T1 is complete

Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color

Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints: $A \neq B$, $A \neq C$, $A \neq E$, $A \neq D$, $B \neq C$, $C \neq D$, $D \neq E$
- A solution: A=red, B=green, C=blue, D=green, E=blue

Brute Force methods

- •Finding a solution by a brute force search is easy
 - Generate and test is a weak method
 - Just generate potential combinations and test each
- Potentially very inefficient
 - With n variables where each can have one of 3 values, there are 3ⁿ possible solutions to check
- •There are ~190 countries in the world, which we can color using four colors
- •4¹⁹⁰ is a big number!

Example: SATisfiability

- Given a set of logic propositions containing variables, find an assignment of the variables to {false, true} that satisfies them
- For example, the two clauses:

$$-(A \lor B \lor \neg C) \land (\neg A \lor D)$$

-equivalent to $(C \rightarrow A) \lor (B \land D \rightarrow A)$

are satisfied by

A = false, B = true, C = false, D = false

 <u>Satisfiability</u> is known to be <u>NP-complete</u>, so in worst case, solving CSP problems requires exponential time

Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Definition of a constraint network (CN)

A constraint network (CN) consists of

- Set of variables X = {x₁, x₂, ... x_n}
 with associate domains {d₁, d₂,... d_n}
 domains are typically finite
- Set of constraints { $c_1, c_2 ... c_m$ } where
 - –each defines a predicate that is a relation over a particular subset of variables (X)

–e.g., C_i involves variables { X_{i1} , X_{i2} , ..., X_{ik} } and defines the relation $R_i \subseteq D_{i1} \times D_{i2} \times ... D_{ik}$

Running example: coloring Australia

NSW

Т

- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables can have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

Unary & binary constraints most common

Binary constraints

- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints

Formal definition of a CN

- Instantiations
 - –An instantiation of a subset of variables S is an assignment of a value (in its domain) to each variable in S
 - An instantiation is legal iff it violates no constraints
- •A solution is a legal instantiation of all variables in the network

Typical tasks for CSP

- Solution related tasks:
 - -Does a solution exist?
 - -Find one solution
 - -Find all solutions
 - -Given a metric on solutions, find best one
 - -Given a partial instantiation, do any of above
- Transform the CN into an equivalent CN that is easier to solve

Binary CSP

- A binary CSP is a CSP where all constraints are binary or unary
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- A binary CSP can be represented as a constraint graph, with a node for each variable and an arc between two nodes iff there's a constraint involving them

- Unary constraints appear as self-referential arcs

Running example: coloring Australia

NSW

Т

- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables can have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

A running example: coloring Australia

- Solutions: complete & consistent assignments
- Here is one of several solutions
- For generality, constraints can be expressed as relations, e.g., describe WA ≠ NT a {(red,green), (red,blue), (green,red), (green,blue), (blue,red),(blue,green)}

Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

- If a is complete then return a
- X ← select an unassigned variable
- D \leftarrow select an ordering for the domain of X
- For each value v in D do
 - If v is consistent with a then
 - Add (X= v) to a

 - If result \neq failure then return result
 - Remove (X= v) from a
- Return failure

Start with CSP-BACKTRACKING({})

Note: this is depth first search; can solve n-queens problems for n ~ 25

Problems with backtracking

- Thrashing: keep repeating the same failed variable assignments
- Things that can help avoid this:
 - -Consistency checking
 - -Intelligent backtracking schemes
- Inefficiency: can explore areas of the search space that aren't likely to succeed
 - -Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking

- -Can we detect inevitable failure early?
- -Which variable should be assigned next?
- -In what order should its values be tried?

Forward Checking

After variable X is assigned to value v, examine each unassigned variable Y connected to X by a constraint and delete values from Y's domain inconsistent with v

Using forward checking and backward checking roughly doubles the size of N-queens problems that can be practically solved

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking

Forward checking

Constraint propagation

- Australia • Forward checking propagates info. from assigned to unassigned variables, but Tasmania doesn't provide early detection for all failures
- NT and SA cannot both be blue!

Northern Territory

South

Queensland

Victoria

New South Wales

Western

Australia

Definition: Arc consistency

- A constraint C_xy is <u>arc consisten</u>t w.r.t. x if for each value v of x there is an allowed value of y
- Similarly define C_xy as arc consistent w.r.t. y
- Binary CSP is arc consistent iff every constraint
 C_xy is arc consistent w.r.t. x as well as y
- When a CSP is not arc consistent, we can make it arc consistent by using the <u>AC3</u> algorithm
 –Also called "enforcing arc consistency"

Arc Consistency Example 1

• Domains

$$-D_x = \{1, 2, 3\}$$

- $-D_y = \{3, 4, 5, 6\}$
- Constraint

 Note: for finite domains, we can represent a constraint as an set of legal value pairs

 $-C_xy = \{(1,3), (1,5), (3,3), (3,6)\}$

 C_xy isn't arc consistent w.r.t. x or y. By enforcing arc consistency, we get reduced domains

$$-D'_x = \{1, 3\}$$

 $-D'_y=\{3, 5, 6\}$

Arc Consistency Example 2

- Domains
 - $-D_x = \{1, 2, 3\}$
 - $-D_y = \{1, 2, 3\}$
- Constraint

 $-C_xy = lambda v1, v2: v1 < v2$

• C_xy is not arc consistent w.r.t. x or y. By enforcing arc consistency, we get reduced domains:

$$-D'_x = \{1, 2\}$$

-D'_y={2, 3}

Aside: Python lambda expressions

Previous slide expressed constraint between two variables as an anonymous Python function taking two arguments

lambda v1,v2: v1 < v2

<function <lambda> at 0x10fcf21e0> >>> f(100,200)

True

>>> f(200,100)

False

Python uses lambda after Alonzo Church's <u>lambda calculus</u> from the 1930s

Arc consistency

Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

Victoria

Tasmania

New South Wales

Western

Australia

• X \rightarrow Y is consistent iff for every value x_i of X there is some allowed value y_i in Y

Arc consistency

Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

Victoria

Tasmania

New South Wales

Western

Australia

• X \rightarrow Y is consistent iff for every value x_i of X there is some allowed value y_j in Y

Arc consistency

Northern Territory

> South Australia

Queensland

Victoria

Tasmania

New South Wales

Western Australia

- Arc consistency detects failure earlier than simple forward checking
- WA=red and Q=green is quickly recognized as a **deadend**, i.e. an impossible partial instantiation
- The arc consistency algorithm can be run as a preprocessor or after each assignment

General CP for Binary Constraints

Algorithm <u>AC3</u>

contradiction \leftarrow false

 $\mathsf{Q} \leftarrow \mathsf{stack} \text{ of all variables}$

while Q is not empty and not contradiction do

 $X \leftarrow UNSTACK(Q)$

For every variable Y adjacent to X do

If REMOVE-ARC-INCONSISTENCIES(X,Y) If domain(Y) is non-empty then STACK(Y,Q) else return false

Complexity of AC3

- e = number of constraints (edges)
- d = number of values per variable
- Each variable is inserted in queue up to d times
- REMOVE-ARC-INCONSISTENCY takes O(d²) time
- CP takes O(ed³) time

Improving backtracking efficiency

- Some standard techniques to improve the efficiency of backtracking
 - Can we detect inevitable failure early?
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000-queen puzzles feasible

Most constrained variable

Most constrained variable:

choose the variable with the fewest legal values

Northern Territory

> South Australia

Queensland

Victoria

Tasmania

New South Wale

Western Australia

- a.k.a. minimum remaining values (MRV) heuristic
- After assigning value to WA, both NT and SA have only two values in their domains
 - choose one of them rather than Q, NSW, V or T

Most constraining variable

- Tie-breaker among most constrained variables
- Choose variable involved in largest # of constraints on remaining variables

Northern Territory

> South Australia

Queensland

Victoria

Tasmania

New South Wale

Western Australia

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW

Most constraining variable

- Tie-breaker among most constrained variables
- Choose variable involved in largest # of constraints on remaining variables

WA

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW

Least constraining value

- Given a variable, choose least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes 1000 queens feasible
- What's an intuitive explanation for this?

Is AC3 Alone Sufficient?

Consider the four queens problem

Solving a CSP still requires search

- •Search:
 - -can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
 - -can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation & search:
 - –perform constraint propagation at each search step

X2=3 eliminates { X3=2, X3=3, X3=4 } \Rightarrow inconsistent!

X2=4 \Rightarrow X3=2, which eliminates { X4=2, X4=3} \Rightarrow inconsistent!

X1 can't be 1, let's try 2

Can we eliminate any other values?

Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values

There is only one solution with X1=2

Sudoku Example

initial problem

	1	2	3	4	5	6	7	8	9
А	4	8	3	9	2	1	6	5	7
в	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
Т	6	9	5	4	1	7	3	8	2

a solution

How can we set this up as a CSP?

<u>Sudoku</u>

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3 × 3 sub-grids must contain all nine digits

 Some initial configurations are easy to solve and some very difficult def sudoku(initValue):

p = Problem()

Define a variable for each cell: 11,12,13...21,22,23...98,99 for i in range(1, 10) :

p.addVariables(range(i*10+1, i*10+10), range(1, 10))

Each row has different values

for i in range(1, 10) :

p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
Each column has different values

for i in range(1, 10) :

p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
Each 3x3 box has different values

p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])

p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])

p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])

add unary constraints for cells with initial non-zero values
for i in range(1, 10) :

```
for j in range(1, 10):
```

```
value = initValue[i-1][j-1]
```

if value:

p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
return p.getSolution()

Sample problems easy = [[0,9,0,7,0,0,8,6,0], [0,3,1,0,0,5,0,2,0], [8,0,6,0,0,0,0,0,0], [0,0,7,0,5,0,0,0,6],[0,0,0,3,0,7,0,0,0],[5,0,0,0,1,0,7,0,0], [0,0,0,0,0,0,1,0,9],[0,2,0,6,0,0,0,5,0],[0,5,4,0,0,8,0,7,0]] hard = [[0,0,3,0,0,0,4,0,0], [0,0,0,0,7,0,0,0,0], [5,0,0,4,0,6,0,0,2], [0,0,4,0,0,0,8,0,0],[0,9,0,0,3,0,0,2,0], [0,0,7,0,0,0,5,0,0], [6,0,0,5,0,2,0,0,1],[0,0,0,0,9,0,0,0,0],[0,0,9,0,0,0,3,0,0]] very hard = [[0,0,0,0,0,0,0,0,0],[0,0,9,0,6,0,3,0,0], [0,7,0,3,0,4,0,9,0], [0,0,7,2,0,8,6,0,0], [0,4,0,0,0,0,0,7,0],[0,0,2,1,0,6,5,0,0],[0,1,0,9,0,5,0,4,0],[0,0,8,0,2,0,7,0,0], [0,0,0,0,0,0,0,0,0]]

Local search for constraint problems

- Remember local search?
- There's a version of local search for CSP problems
- Basic idea:
 - -generate a random "solution"
 - -Use metric of "number of conflicts"
 - Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search like....?

Min Conflict Example

- •States: 4 Queens, 1 per column
- •Operators: Move a queen in its column
- •Goal test: No attacks
- Evaluation metric: Total number of attacks

How many conflicts does each state have?

Basic Local Search Algorithm

Assign one domain value d_i to each variable v_i while no solution & not stuck & not timed out: bestCost $\leftarrow \infty$; bestList $\leftarrow [];$ for each variable $v_i | Cost(Value(v_i)) > 0$ for each domain value d_i of v_i if Cost(d_i) < bestCost bestCost \leftarrow Cost(d_i); bestList \leftarrow [d_i]; else if $Cost(d_i) = bestCost$ bestList \leftarrow bestList \cup d_i Take a randomly selected move from bestList

Eight Queens using Backtracking

Undo move for Queen 7 and so on...

Eight Queens using Local Search

Backtracking Performance

Local Search Performance

Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- Can solve arbitrary size (i.e., millions) N-Queens problems in constant time
- Appears to hold for arbitrary CSPs with the caveat...

Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.

Famous example: labeling line drawings

- <u>Waltz</u> labeling algorithm, earliest AI CSP application (1972)
 - Convex interior lines labeled as +
 - Concave interior lines labeled as -
 - Boundary lines labeled as with background to left
- 208 labeling possible labelings, but only 18 are legal

Labeling line drawings II

Here are some illegal labelings

Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

solution for one labeling problem

labeling problem with no solution

Shadows add complexity

CSP was able to label scenes where some of the lines were caused by shadows

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - -Hard vs. soft constraints vs. preferences
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - -Symbolic constraints
 - -Logical constraints
 - -Numerical constraints [constraint solving]
 - -Temporal constraints
 - -Mixed constraints

Challenges for constraint reasoning

- What if constraints are represented intentionally?
 - Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
 - Dynamic constraint networks
 - Temporal constraint networks
 - -Constraint repair
- What if multiple agents or systems are involved in constraint satisfaction?
 - Distributed CSPs
 - Localization techniques