Uninformed Search

Chapter 3

Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison
Today’s topics

• Goal-based agents
• Representing states and actions
• Example problems
• Generic state-space search algorithm
• Specific algorithms
 – Breadth-first search
 – Depth-first search
 – Uniform cost search
 – Depth-first iterative deepening
• Example problems revisited
Allen Newell and Herb Simon developed the problem space principle as an AI approach in the late 60s/early 70s.

"The rational activity in which people engage to solve a problem can be described in terms of (1) a set of states of knowledge, (2) operators for changing one state into another, (3) constraints on applying operators and (4) control knowledge for deciding which operator to apply next."

• **Herb Simon** was a polymath who contributed to economics, cognitive science, management, computer science and many other fields

• He was awarded a Nobel Prize in 1978 “for his pioneering research into the decision-making process within economic organizations”

• He is the only computer scientist to have won a Nobel Prize
Example: 8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3x3 board, move the tiles in such a way so as to produce a desired goal configuration of the tiles.

Start State

Goal State
Simpler: 3-Puzzle
Building goal-based agents

We must answer the following questions

— How do we represent the state of the “world”?
— What is the goal and how can we recognize it?
— What are the possible actions?
— What relevant information do we encode to describe the state and available transitions, and solve the problem?

![Initial state and goal state image]
What is the goal to be achieved?

• Can describe a situation we want to achieve, a set of properties that we want to hold, etc.
 - Requires defining a **goal test**, so we know what it means to have achieved/satisfied goal
 - A hard question, rarely tackled in AI; usually assume system designer or user specifies goal
 - Psychologists and motivational speakers stress importance of establishing clear goals as a first step towards solving a problem
• What are your goals???
What are the actions?

• Characterize **primitive actions** for making changes in the world to achieve a goal

• **Deterministic** world: no uncertainty in an action’s effects (simple model)

• Given action and description of **current world state**, action completely specifies
 – Whether action **can** be applied to the current world (i.e., is it applicable and legal?) and
 – What state **results** after action is performed in the current world (i.e., no need for **history** information to compute the next state)
Representing actions

• Actions can be considered as **discrete events** that occur at an **instant of time**, e.g.:

 - If “In class” and perform action “go home,” then next state is “at home.” There’s no time where you’re neither in class nor at home (i.e., in the state of “going home”)

• Number of actions/operators depends on the **representation** used in describing a state

 - 8-puzzle: specify 4 possible moves for each of the 8 tiles, resulting in a total of **4*8=32 operators**

 - Or, we could specify four moves for “blank” square and we only need **4 operators**

• Representational shift can simplify a problem!
Representing states

• What information is necessary to describe all relevant aspects to solving the goal?

• **Size of a problem** usually described in terms of possible **number of states**
 - Tic-Tac-Toe has about 3^9 states ($19,683 \approx 2 \times 10^4$)
 - Checkers has about 10^{40} states
 - Rubik’s Cube has about 10^{19} states
 - Chess has about 10^{120} states in a typical game
 - Go has 2×10^{170}
 - Theorem provers may deal with an infinite space

• State space size \approx solution difficulty
Representing states

- State space size ≈ solution difficulty
- Our estimates were loose upper bounds
- How many legal states does tic-tac-toe really have?
Representing states

• Our estimates were loose upper bounds
• How many possible, legal states does tic-tac-toe really have?
• Simple upper bound: nine board cells, each of which can be empty, O or X, so \(3^9\)
• Only 593 states after eliminating
 – impossible states
 – Rotations and reflections
Some example problems

• Toy problems and micro-worlds
 – 8-Puzzle
 – Missionaries and Cannibals
 – Cryptarithmetic
 – Remove 5 Sticks
 – Water Jug Problem

• Real-world problems
8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3x3 board, move the tiles in such a way so as to produce a desired goal configuration of the tiles.

Start State

Goal State

What are the states, goal test, actions?
8 puzzle

- **State:** 3x3 array of the tiles on the board
- **Actions:** Move blank square left, right, up or down
 More efficient encoding than one with 4 possible moves for each of 8 distinct tiles
- **Initial State:** A given board configuration
- **Goal:** A given board configuration
15 puzzle

• Popularized, but not invented by, Sam Loyd
• In late 1800s he offered $1000 to all who could find a solution
• He sold many puzzles
• Its states form two disjoint spaces
• There was no path to the solution from his initial state!
The 8-Queens Puzzle

Place eight queens on a chessboard such that no queen attacks any other.

We can generalize the problem to a $N \times N$ chessboard.

What are the states, goal test, actions?
Route Planning

Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text
Example: Water Jug Problem

- Two jugs J1 and J2 with capacity C1 and C2
- Initially J1 has W1 water and J2 has W2 water
 - e.g.: a full 5 gallon jug and an empty 2 gallon jug
- Possible actions:
 - Pour from jug X to jug Y until X empty or Y full
 - Empty jug X onto the floor
- Goal: J1 has G1 water and J2 G2
 - G1 or G0 can be -1 to represent any amount
- E.g.: initially full jugs with capacities 3 and 1 liters, goal is to have 1 liter in each
So...

- How can we represent the states?
- What an initial state
- How do we recognize a goal state
- What are the actions; how can we tell which ones can be performed in a given state; what is the resulting state
- How do we search for a solution from an initial state given a goal state
- What is a solution? The goal state achieved or a path to it?
Search in a state space

• Basic idea:
 – Create representation of initial state
 – Try all possible actions & connect states that result
 – Recursively apply process to the new states until we find a solution or dead ends

• We need to keep track of the connections between states and might use a
 – Tree data structure or
 – Graph data structure

• A graph structure is best in general...
Search in a state space

Consider a water jug problem with a 3-liter and 1-liter jug, an initial state of (3,1) and a goal stage of (1,1).

Tree model of space

Graph model of space

graph model avoids redundancy and loops and is usually preferred
Formalizing search in a state space

• A state space is a graph \((V, E)\) where \(V\) is a set of nodes and \(E\) is a set of arcs, and each arc is directed from a node to another node.

• **Nodes** are data structures with a state description and other info, e.g., node’s parent, name of action that generated it from parent, etc.

• **Arcs** are instances of actions. When operator is applied to state at its source node, then resulting state is arc’s destination node.
Formalizing search in a state space

• Each arc has fixed, positive cost associated with it corresponding to the operator cost
 – Simple case: all costs are 1

• Each node has a set of successor nodes corresponding to all legal actions that can be applied at node’s state
 – Expanding a node = generating its successor nodes and adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes

• A goal test predicate is applied to a state to determine if its associated node is a goal node
Example: Water Jug Problem

- Two jugs J1 and J2 with capacity C1 and C2
- Initially J1 has W1 water and J2 has W2 water
 - e.g.: a full 5 gallon jug and an empty 2 gallon jug
- Possible actions:
 - Pour from jug X to jug Y until X empty or Y full
 - Empty jug X onto the floor
- Goal: J1 has G1 water and J2 G2
 - G1 or G0 can be -1 to represent any amount
Example: Water Jug Problem

Given full 5 gallon jug and an empty 2 gallon jug, goal is to fill 2 gallon jug with exactly one gallon

- State representation?
 - General state?
 - Initial state?
 - Goal state?

- Possible actions?
 - Condition?
 - Resulting state?

Action table

<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Transition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Water Jug Problem

Given full 5 gallon jug and an empty 2 gallon jug, goal is to fill 2 gallon jug with exactly one gallon

—State = (x,y), where x is water in jug 1 and y is water in jug 2

—Initial State = (5,0)

—Goal State = (-1,1), where -1 means any amount

Action table

<table>
<thead>
<tr>
<th>Name</th>
<th>Cond.</th>
<th>Transition</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump1</td>
<td>x>0</td>
<td>(x,y)→(0,y)</td>
<td>Empty Jug 1</td>
</tr>
<tr>
<td>dump2</td>
<td>y>0</td>
<td>(x,y)→(x,0)</td>
<td>Empty Jug 2</td>
</tr>
<tr>
<td>pour_1_2</td>
<td>x>0 & y<C2</td>
<td>(x,y)→(x-D,y+D)</td>
<td>Pour from Jug 1 to Jug 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D = \min(x,C2-y))</td>
<td></td>
</tr>
<tr>
<td>pour_2_1</td>
<td>y>0 & X<C1</td>
<td>(x,y)→(x+D,y-D)</td>
<td>Pour from Jug 2 to Jug 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D = \min(y,C1-x))</td>
<td></td>
</tr>
</tbody>
</table>
Class Exercise

• Representing a 2x2 Sudoku puzzle as a search space

• Fill in the grid so that every row, every column, and every 2x2 box contains the digits 1 through 4
 – What are the states?
 – What are the actions?
 – What are the constraints on actions?
 – What is the description of the goal state?

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Formalizing search (3)

• **Solution**: sequence of actions associated with a path from a start node to a goal node

• **Solution cost**: sum of the arc costs on the solution path
 – If all arcs have same (unit) cost, then solution cost is just the length of solution (number of steps / state transitions)
 – Algorithms generally require that arc costs cannot be negative (why?)
Formalizing search (4)

• **State-space search**: searching through state space for solution by **making explicit** a sufficient portion of an **implicit** state-space graph to find a goal node
 – Can’t materializing whole space for large problems
 – Initially V={S}, where S is the start node, E={}
 – On expanding S, its successor nodes are generated and added to V and associated arcs added to E
 – Process continues until a goal node is found

• Nodes represent a *partial solution* path (+ cost of partial solution path) from S to the node
 – From a node there may be many possible paths (and thus solutions) with this partial path as a prefix
State-space search algorithm

;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, problem.OPERATORS))
 end

;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
Key procedures to be defined

- **EXPAND**
 - Generate all successor nodes of a given node, adding them to the graph
- **GOAL-TEST**
 - Test if state satisfies all goal conditions
- **QUEUEING-FUNCTION**
 - Used to maintain a ranked list of nodes that are candidates for expansion
Typical node data structure includes:

- State at this node
- Parent node(s)
- Action(s) applied to get to this node
- Depth of this node (# of actions on shortest known path from initial state)
- Cost of path (sum of action costs on best path from initial state)
Some issues

• Search process constructs a search tree/graph, where
 – **root** is initial state and
 – **leaf nodes** are nodes
 • not yet expanded (i.e., in list “nodes”) or
 • having no successors (i.e., they’re *deadends* because no operators were applicable and yet they are not goals)
• Search tree may be infinite due to loops; even graph may be infinite for some problems
• Solution is a *path* or a *node*, depending on problem.
 – E.g., in cryptarithmetic return a node; in 8-puzzle, a path
• Changing definition of the QUEUEING-FUNCTION leads to different search strategies
Uninformed vs. informed search

Uninformed search strategies (blind search)

– Use no information about likely “direction” of goal node(s)
– Methods: breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional

Informed search strategies (heuristic search)

– Use information about domain to (try to) (usually) head in the general direction of goal node(s)
– Methods: hill climbing, best-first, greedy search, beam search, algorithm A, algorithm A*
Evaluating search strategies

• Completeness
 – Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
 – Usually measured by *number of nodes expanded*

• Space complexity
 – Usually measured by maximum size of graph/tree during the search

• Optimality/Admissibility
 – If a solution is found, is it *guaranteed* to be an optimal one, i.e., one with minimum cost
Example of uninformed search strategies

Consider this search space where S is the start node and G is the goal. Numbers are arc costs.
Classic uninformed search methods

• The four classic uninformed search methods
 – Breadth first search (BFS)
 – Depth first search (DFS)
 – Uniform cost search (generalization of BFS)
 – Iterative deepening (blend of DFS and BFS)

• To which we can add another technique
 – Bi-directional search (hack on BFS)
Breadth-First Search

- Enqueue nodes in **FIFO** (first-in, first-out) order
- **Complete**
- **Optimal** (i.e., admissible) finds shortest path, which is optimal if all operators have same cost
- **Exponential time and space complexity**, $O(b^d)$, where d is depth of solution and b is branching factor (i.e., # of children)
- Takes a **long time to find solutions** with large number of steps because must look at all shorter length possibilities first
Breadth-First Search
weighted arcs

<table>
<thead>
<tr>
<th>Expanded node</th>
<th>Nodes list (aka Fringe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^0</td>
<td>${ A^1 B^1 C^8 }$</td>
</tr>
<tr>
<td>A^3</td>
<td>${ B^1 C^8 D^6 E^{10} G^{18} }$</td>
</tr>
<tr>
<td>B^1</td>
<td>${ C^8 D^6 E^{10} G^{18} G^{21} }$</td>
</tr>
<tr>
<td>C^8</td>
<td>${ D^6 E^{10} G^{18} G^{21} G^{13} }$</td>
</tr>
<tr>
<td>D^6</td>
<td>${ E^{10} G^{18} G^{21} G^{13} }$</td>
</tr>
<tr>
<td>E^{10}</td>
<td>${ G^{18} G^{21} G^{13} }$</td>
</tr>
<tr>
<td>G^{18}</td>
<td>${ G^{21} G^{13} }$</td>
</tr>
</tbody>
</table>

Note: we typically don’t check for goal until we expand node
Solution path found is $S\ A\ G$, cost 18
Number of nodes expanded (including goal node) = 7
Breadth-First Search

Long time to find solutions with many steps: we must look at all shorter length possibilities first

• Complete search tree of depth d where non-leaf nodes have b children has $1 + b + b^2 + \ldots + b^d = (b^{d+1} - 1)/(b-1)$ nodes $= \Omega(b^d)$

• Tree of depth 12 with branching 10 has more than a trillion nodes

• If BFS expands 1000 nodes/sec and nodes uses 100 bytes, then it may take 35 years to run and uses 111 terabytes of memory!
Depth-First (DFS)

- Enqueue nodes on nodes in **LIFO** (last-in, first-out) order, i.e., use stack data structure to order nodes
- **May not terminate** w/o **depth bound**, i.e., ending search below fixed depth D (depth-limited search)
- **Not complete** (with or w/o cycle detection, with or w/o a cutoff depth)
- **Exponential time**, $O(b^d)$, but **linear space**, $O(bd)$
- Can find **long solutions quickly** if lucky (and **short solutions slowly** if unlucky!)
- On reaching deadend, can only back up one level at a time even if problem occurs because of a bad choice at top of tree
Depth-First Search

<table>
<thead>
<tr>
<th>Expanded node</th>
<th>Nodes list</th>
</tr>
</thead>
<tbody>
<tr>
<td>S⁰</td>
<td>{ S⁰ }</td>
</tr>
<tr>
<td>A³</td>
<td>{ A³ B¹ C⁸ }</td>
</tr>
<tr>
<td>D⁶</td>
<td>{ E¹⁰ G¹⁸ B¹ C⁸ }</td>
</tr>
<tr>
<td>E¹⁰</td>
<td>{ G¹⁸ B¹ C⁸ }</td>
</tr>
<tr>
<td>G¹⁸</td>
<td>{ B¹ C⁸ }</td>
</tr>
</tbody>
</table>

Solution path found is S A G, cost 18

Number of nodes expanded (including goal node) = 5
Uniform-Cost Search (UCS)

• Enqueue nodes by **path cost**. i.e., let $g(n) = \text{cost of path from start to current node } n$. Sort nodes by increasing value of $g(n)$.

• Also called *Dijkstra’s Algorithm*, similar to *Branch and Bound Algorithm* from operations research

• **Complete (**)**

• **Optimal/Admissible (**)**

 Depends on goal test being applied *when node is removed from nodes list*, not when its parent node is expanded & node first generated

• **Exponential time and space complexity, $O(b^d)$**
Uniform-Cost Search

<table>
<thead>
<tr>
<th>Expanded node</th>
<th>Nodes list</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^0</td>
<td>{ B^1 A3 C8 }</td>
</tr>
<tr>
<td>B^1</td>
<td>{ A3 C8 G21 }</td>
</tr>
<tr>
<td>A3</td>
<td>{ D6 C8 E10 G18 G21 }</td>
</tr>
<tr>
<td>D6</td>
<td>{ C8 E10 G18 G21 }</td>
</tr>
<tr>
<td>C8</td>
<td>{ E10 G13 G18 G21 }</td>
</tr>
<tr>
<td>E10</td>
<td>{ G13 G18 G21 }</td>
</tr>
<tr>
<td>G13</td>
<td>{ G18 G21 }</td>
</tr>
</tbody>
</table>

Solution path found is S C G, cost 13

Number of nodes expanded (including goal node) = 7
Depth-First Iterative Deepening (DFID)

- Do DFS to depth 0, then (if no solution) DFS to depth 1, etc.
- Usually used with a tree search
- Complete
- **Optimal/Admissible** if all operators have unit cost, else finds shortest solution (like BFS)
- Time complexity a bit worse than BFS or DFS

 Nodes near top of search tree generated many times, but since almost all nodes are near tree bottom, worst case time complexity still exponential, $O(b^d)$
Depth-First Iterative Deepening (DFID)

• If branching factor is b and solution is at depth d, then nodes at depth d are generated once, nodes at depth $d-1$ are generated twice, etc.
 — Hence $b^d + 2b^{(d-1)} + \ldots + db \leq b^d / (1 - 1/b)^2 = O(b^d)$.
 — If $b=4$, worst case is 1.78×4^d, i.e., 78% more nodes searched than exist at depth d (in worst case)

• **Linear space complexity**, $O(bd)$, like DFS

• Has advantages of BFS (completeness) and DFS (i.e., limited space, finds longer paths quickly)

• Preferred for **large state spaces** where **solution depth is unknown**
How they perform

• **Depth-First Search:**
 – 4 Expanded nodes: S A D E G
 – Solution found: S A G (cost 18)

• **Breadth-First Search:**
 – 7 Expanded nodes: S A B C D E G
 – Solution found: S A G (cost 18)

• **Uniform-Cost Search:**
 – 7 Expanded nodes: S A D B C E G
 – Solution found: S C G (cost 13)

 Only uninformed search that worries about costs

• **Iterative-Deepening Search:**
 – 10 nodes expanded: S S A B C S A D E G
 – Solution found: S A G (cost 18)
Searching Backward from Goal

• Usually a successor function is reversible
 – i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s properties), we could search backward to the initial state

• It might be more efficient
 – Depends on whether the graph fans in or out
Bi-directional search

- Alternate searching from the start state toward the goal and from the goal state toward the start
- Stop when the frontiers intersect
- Works well only when there are unique start & goal states
- Requires ability to generate “predecessor” states
- Can (sometimes) lead to finding a solution more quickly
Comparing Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(b^d)</td>
<td>(b^d)</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
<td>(b^{dr/2})</td>
</tr>
<tr>
<td>Space</td>
<td>(b^d)</td>
<td>(b^d)</td>
<td>(bm)</td>
<td>(bl)</td>
<td>(bd)</td>
<td>(b^{dr/2})</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>