Unsupervised Learning: Clustering

Some material adapted from slides by Andrew Moore, CMU

Unsupervised Learning

- Supervised learning used labeled data pairs (x, y) to learn a function f : X→Y.
- But, what if we don't have labels?
- No labels = unsupervised learning
- Only some points are labeled = semi-supervised
 learning

-Getting labels is expensive, so we only get a few

• **Clustering** is the unsupervised grouping of data points. It can be used for **knowledge discovery**

Clustering algorithms

- Many clustering algorithms
- Clustering typically done using a **distance measure** defined between instances
- Distance defined by instance feature space
- Agglomerative approach works bottom up:
 - Treat each instance as a cluster
 - Merge two closest clusters
 - Repeat until a stop condition is met

• Top-down approach starts cluster with all instances

- Find a cluster to split into two or more smaller clusters
- Repeat until stop condition met

Clustering Data

- Randomly choose k cluster center locations, aka centroids
- Loop until convergence
 - assign a point to cluster of the closest centroid
 - re-estimate cluster centroids
 based on its data assigned
- Convergence: no point is assigned to a different cluster

k = 5

K-Means (k, data)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid.
 - Re-estimate the cluster centroids based on the data assigned to each
- Convergence: no point is assigned to a different cluster

K-Means (k, data)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each
- Convergence: no point is assigned to a different cluster

K-Means (k, data)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each
- Convergence: no point is assigned to a different cluster

•••

Classify Cluster Associate Select attributes Visualize Weka Explorer

| Preprocess | Clusterer Choose SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 3 -A "weka.core.EuclideanDistance -R first-Cluster mode Clusterer output

Cluster mode	Clusterer output					
• Use training set	WITTIT CLUSTEL SUM OF	squarea cirors.	-01/-500525055	// -		
O Supplied test set Set	Initial starting point	s (random):				
O Percentage split % 66	Cluster 0: 6.1,2.9,4.7	7,1.4,Iris-versico	olor			
○ Classes to clusters evaluation	Cluster 2: 6.9,3.1,5.1	L,2.3,Iris-virgini	ica			
(Nom) class	Missing unline slabell	-	and a start of a			
✓ Store clusters for visualization	Missing values globall	ly replaced with m	nean/mode			
	Final cluster centroid	is:	61			
Ignore attributes	Attribute	Full Data	Cluster# 0	1	2	
		(150.0)	(50.0)	(50.0)	(50.0)	
Start Stop	sepallength	5.8433	5.936		6.588	
Result list (right-click for options)	sepalwidth	3.054	2.77	3.418	2.974	
	petallength	3.7587	4.26	1.464	5.552	
11:17:51 – SimpleKMeans	petalwidth	1.1987	1.326	0.244	2.026	
	Time taken to build mo === Model and evaluati Clustered Instances 0 50 (33%) 1 50 (33%) 2 50 (33%)	odel (full trainin ion on training se	ng data) : 0 se et ===	econds		~
Status						
ОК					Log	

• • •

Preprocess

Classify Cluster Associate Select attributes Visualize

Weka Explorer

Clusterer

Choose SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 3 -A "weka.core.EuclideanDistance -R first-

Cluster mode	Clusterer output	
 Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) class Image: Set and the set of the set	sepallength 5.8433 5.8885 5.006 6.8462 sepalwidth 3.054 2.7377 3.418 3.0821 petallength 3.7587 4.3967 1.464 5.7026 petalwidth 1.1987 1.418 0.244 2.0795	
Store clusters for visualization	Time taken to build model (full training data) : 0 seconds	
Ignore attributes Start Stop Result list (right-click for options)	=== Model and evaluation on training set === Clustered Instances 0 61 (41%) 1 50 (33%) 2 39 (26%)	
11:17:51 - SimpleKMeans 11:21:09 - SimpleKMeans	Class attribute: class Classes to Clusters: 0 1 2 < assigned to cluster 0 50 0 Iris-setosa 47 0 3 Iris-versicolor 14 0 36 Iris-virginica Cluster 0 < Iris-versicolor Cluster 1 < Iris-setosa Cluster 2 < Iris-virginica Incorrectly clustered instances : 17.0 11.3333 %	
Status		
ок	Log	. x 0

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ... - Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, non-negative matrix factorization. Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ... Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ...

- Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics. Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Examples

🔍 🔍 🧧 sklearn.cluster.KMeans — sci	+		⇒
< > C ፡፡ ♥₽№ ⊕ scikit-le	arn.org/stable/modules/g	enerated/sklearn.cluster.KMeans.html	〇 土 📼
learn	Home Install	ation Documentation - Examples Google Custom Search	Fax me an c
Previous Next Up sklearn.clust sklearn.clust API Reference		sklearn.cluster.KMeans	sittes
scikit-learn v0.19.1			
Other versions	<i>class</i> sklearn.cl	uster. KMeans (n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001,	[source]
Please cite us if you use " the software.	precompute_dista	nces= auto, verbose=0, random_state=None, copy_x=1rue, n_jobs=1, algorithm= auto j	[Source]
sklearn.cluster.KMeans	K-Means cluste	ring	
sklearn.cluster.KMeans	Read more in t	ne User Guide.	
	Parameters:	 n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. init : {'k-means++', 'random' or an ndarray} Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroid If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives th centers. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. Th results will be the best output of n_init consecutive runs in terms of inertia. max_iter : int_default: 300	speed s. ne initial ne final

- sklearn has a few test datasets, including IRIS
- Can load data directly from mldata.org & from CSV files
- <u>mldata.org</u> has ~900 datasets for machine learning

Data Plant classification 2018-04-06 16:27

Petal length

Problems with K-Means

- Only works for numeric data (typically reals)
- Very sensitive to the initial points
 - Do many runs of k-Means, each with different initial centroids
 - Seed centroids using better method than random (e.g., Farthest-first sampling)
- Must manually choose k
 - Learn optimal k for clustering
 - -Note: requires a performance measure

Problems with K-Means

• How do you tell it which clustering you want?

Constrained clustering technique

Hierarchical clustering

Agglomerative

 bottom up approach: elements start as individual clusters & clusters are merged as one moves up the hierarchy

- Divisive
 - -top down approach: elements start as a single cluster & clusters are split as one moves down the hierarchy

Hierarchical Clustering

Recursive partitioning/merging of a data set

Dendogram

- Tree structure representing all data partitionings
- Constructed as clustering proceeds

Nine items

Dendogram

- Tree structure representing all data partitionings
- Constructed as clustering proceeds
- Get a K-clustering by looking at connected components at any given level
- Frequently binary dendograms, but n-ary ones easy to obtain with minor algorithm changes

Four clusters

Hierarchical clustering advantages

- Need not specify number of clusters
- Good for data visualization
 - See how data points interact at many levels
 - Can view data at multiple granularity levels
 - Understand how all points interact
- Specifies all of the K clusterings/partitions

Divisive hierarchical clustering

- Top-down
- Finding best partitioning of data generally exponential in time
- Common approach:
 - Let C be a set of clusters
 - Initialize C to be a one-clustering of data
 - While there exists a cluster c in C
 - remove *c* from **C**
 - partition c into 2 clusters (c₁ and c₂) using a flat clustering algorithm (e.g., k-means
 - Add to c_1 and c_2 **C**
- Bisecting k-means

split using flat clustering

Hierarchical Agglomerative Clustering

- Let **C** be a set of clusters
- Initialize C to all points/docs as separate clusters
- While **C** contains more than one cluster
 - -find c_1 and c_2 in **C** that are **closest together**
 - -remove c_1 and c_2 from **C**
 - merge c_1 and c_2 and add resulting cluster to **C**
- Merging history forms a binary tree or hierarchy
- Q: How to measure distance between clusters?

Single-link: Similarity of the *most* similar (single-link)

Complete-link: Similarity of the "furthest" points, the *least* similar

Centroid: Clusters whose centroids (centers of gravity) are the most similar

Average-link: Average similarity between all pairs of elements

	Weka Explorer
Preprocess Classify Cluster Associate Select a	ttributes Visualize
Clusterer Choose HierarchicalClusterer -N 3 -L SINGLE -F	P -A "weka.core.EuclideanDistance -R first-last"
Cluster mode	Clusterer output
 Use training set Supplied test set Percentage split Classes to clusters evaluation (Nom) class Store clusters for visualization 	Cluster 0 ((((((((((((((((((((((((((((((((((((
Ignore attributes Start Start Stop Result list (right-click for options) 15:06:44 - HierarchicalClusterer	Time taken to build model (full training data) : 0.01 seconds === Model and evaluation on training set === Clustered Instances 0 49 (33%) 1 1 (1%) 2 100 (67%) Class attribute: class Classes to Clusters:
	<pre>0 1 2 < assigned to cluster 49 1 0 Iris-setosa 0 0 50 Iris-versicolor 0 0 50 Iris-virginica Cluster 0 < Iris-setosa Cluster 1 < No class Cluster 2 < Iris-versicolor Incorrectly clustered instances : 51.0 34 %</pre>

Using default LINK cluster distance measure gives bad results

Knowing when to stop

- A general issue for hierarchical clustering is knowing when to stop merging/splitting a cluster
- We may have a problem specific desired range of clusters (e.g., 3-6)
- There are some general metrics for assessing the quality of a cluster
- There are also domain specific heuristics for cluster quality

Weka Explorer			
Preprocess Classify Cluster Associate Select at	ttributes Visualize		
Clusterer			
Choose HierarchicalClusterer -N 3 -L NEIGHBO	R_JOINING -P -A "weka.core.EuclideanDistance -R fi st-last"		
Cluster mode	Clusterer output		
 Use training set Supplied test set Set Percentage split % 66 Classes to clusters evaluation (Nom) class 	Cluster 1 (((((1.4:0.07344,1.5:0.07344):0.08446,((1.5:0.09914,1.4:0.09914):0.0122,(1.3:0.08407,((1.4: Cluster 2 (((2.5:0.10622,(2.3:0.0975,(2.4:0.06047,2.3:0.06047):0.03703):0.00872):0.29975,((((2.1:0.10		
Store clusters for visualization	Time taken to build model (full training data) : 0.04 seconds		
Ignore attributes	=== Model and evaluation on training set ===		
Start Stop Result list (right-click for options) 15:06:44 - HierarchicalClusterer	0 50 (33%) 1 75 (50%) 2 25 (17%)		
15:11:24 - HierarchicalClusterer 15:11:52 - HierarchicalClusterer 15:12:50 - HierarchicalClusterer	Class attribute: class Classes to Clusters:		
	<pre>0 1 2 < assigned to cluster 50 0 0 Iris-setosa 0 50 0 Iris-versicolor 0 25 25 Iris-virginica Cluster 0 < Iris-setosa Cluster 1 < Iris-versicolor Cluster 2 < Iris-virginica Incorrectly clustered instances : 25.0 16.6667 %</pre>		

Using **WARD** cluster distance measure improves results