Machine Learning: Decision Trees

Chapter 18.1-18.3

Some material adopted from notes by Chuck Dyer
Decision Trees (DTs)

• A supervised learning method used for classification and regression

• Given a set of training tuples, learn model to predict one value from the others
 – Learned value typically a class (e.g., goodRisk)

• Resulting model is simple to understand, interpret, visualize and apply
Learning a Concept

The red groups are **negative** examples, blue **positive**

Attributes
- **Size**: large, small
- **Color**: red, green, blue
- **Shape**: square, circle

Task
Classify new object with a size, color & shape as positive or negative
Training data

<table>
<thead>
<tr>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>Green</td>
<td>Square</td>
<td>Negative</td>
</tr>
<tr>
<td>Large</td>
<td>Green</td>
<td>Circle</td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td>Green</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Green</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Red</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Red</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Red</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Red</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Blue</td>
<td>Square</td>
<td>Negative</td>
</tr>
<tr>
<td>Small</td>
<td>Blue</td>
<td>Square</td>
<td>Positive</td>
</tr>
<tr>
<td>Large</td>
<td>Blue</td>
<td>Circle</td>
<td>Positive</td>
</tr>
<tr>
<td>Small</td>
<td>Blue</td>
<td>Circle</td>
<td>Positive</td>
</tr>
</tbody>
</table>
A decision tree-induced partition

The red groups are negative examples, blue positive

Negative things are big, green shapes and big, blue squares
Learning decision trees

• Goal: Build decision tree to classify examples as positive or negative instances of concept using supervised learning from training data

• A decision tree is a tree where
 – non-leaf nodes have an attribute (feature)
 – leaf nodes have a classification (+ or -)
 – each arc has a possible value of its attribute

• Generalization: allow for >2 classes
 – e.g., classify stocks as {sell, hold, buy}
Expressiveness of Decision Trees

• Can express any function of input attributes, e.g. for Boolean functions, truth table row \rightarrow path to leaf:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A xor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

• There’s a consistent decision tree for any training set with one path to leaf for each example (assuming deterministic), but it probably won't generalize to new examples

• We prefer more compact decision trees
Inductive learning and bias

• Suppose that we want to learn a function $f(x) = y$ and we’re given sample (x,y) pairs, as in figure (a)

• Can make several hypotheses about f, e.g.: (b), (c) & (d)

• Preference reveals learning technique bias, e.g.:
 – prefer piece-wise functions
 – prefer a smooth function
 – prefer a simple function and treat outliers as noise
Preference bias: Occam’s Razor

• William of Ockham (1285-1347)
 – “non sunt multiplicanda entia praeter necessitatem”
 – entities are not to be multiplied beyond necessity

• **Simplest** consistent explanation is the best

• **Smaller** decision trees correctly classifying training examples preferred over larger ones

• Finding **the** smallest decision tree is NP-hard, so we use algorithms that find reasonably small ones
R&N’s restaurant domain

• Develop decision tree for decision patron makes when deciding whether or not to wait for a table
• Two classes: wait, leave
• Training set of 12 examples
• ~ 7000 possible cases
Attribute-based representations

<table>
<thead>
<tr>
<th>Example</th>
<th>Attrs</th>
<th>Attributes</th>
<th>Type</th>
<th>Est</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alt</td>
<td>Bar</td>
<td>Fri</td>
<td>Hun</td>
<td>Pat</td>
</tr>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
</tr>
</tbody>
</table>

- **Examples described by attribute values** (Boolean, discrete, continuous), e.g., situations where I will/won't wait for a table
- **Classification of examples is positive** (T) or **negative** (F)
- Serves as a training set
Decision tree from introspection
Issues

- It’s like 20 questions
- We can generate many decision trees depending on what attributes we ask about and in what order
- How do we decide?
- What makes one decision tree better than another: number of nodes? number of leaves? maximum depth?
ID3 / C4.5 / J48 Algorithm

- Greedy algorithm for decision tree construction developed by Ross Quinlan circa 1987
- Top-down construction of tree by recursively selecting *best attribute* to use at current node
 - Once attribute selected for current node, generate child nodes, one for each possible attribute value
 - Partition examples using values of attribute, & assign these subsets of examples to appropriate child node
 - Repeat for each child node until all examples associated with node are all positive or negative
Choosing best attribute

• Key problem: choose attribute to split a given set of examples

• Possibilities for choosing attribute:
 – Random: Select one at random
 – Least-values: one with smallest # of possible values
 – Most-values: one with largest # of possible values
 – Max-gain: one with largest expected information gain, i.e., gives smallest expected size of subtrees rooted at its children

• The ID3 algorithm uses max-gain
Restaurant example

Random: Patrons or Wait-time; **Least-values**: Patrons; **Most-values**: Type; **Max-gain**: ???

<table>
<thead>
<tr>
<th>Type variable</th>
<th>Patrons variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Y</td>
</tr>
<tr>
<td>Italian</td>
<td>Y</td>
</tr>
<tr>
<td>Thai</td>
<td>N</td>
</tr>
<tr>
<td>Burger</td>
<td>N</td>
</tr>
</tbody>
</table>

Patrons variable
- Empty
- Some
- Full

Type variable
- French
- Italian
- Thai
- Burger
Choosing an attribute

Idea: good attribute splits examples into subsets that are (ideally) *all positive* or *all negative*

Which is better: *Patrons?* or *Type?*
Splitting examples by testing attributes
ID3-induced decision tree

Patrons?
- None: F
- Some: T
- Full:
 - Hungry?
 - Yes: Type?
 - French: T
 - Italian: F
 - Thal: Fri/Sat?
 - No: F
 - Yes: T
 - No: Burger: T
Compare the two Decision Trees
Information theory 101

• Sprang fully formed from Claude Shannon’s seminal work: Mathematical Theory of Communication in 1948

• Intuitions
 – Common words (a, the, dog) shorter than less common ones (parliamentarian, foreshadowing)
 – Morse code: common letters have shorter encodings

• Information inherent in data/message (information entropy) measured in minimum number of bits needed to store/send using a good encoding
Information theory 101

• **Information entropy** ... tells how much information there is in an event. More uncertain an event is, more information it contains

• Receiving a message is an event

• How much information is in these messages
 – The sun rose today!
 – It’s sunny today in Honolulu!
 – The coin toss is heads!
 – It’s sunny today in Seattle!
 – Life discovered on Mars!

 | None | A lot |
Information theory 101

• For n equally probable possible messages or data values, each has probability \(\frac{1}{n} \)

• Information of a message is \(-\log(p) = \log(n)\)
 e.g., with 16 messages, then \(\log(16) = 4\) and we need 4 bits to identify/send each message

• For probability distribution \(P(p_1, p_2 \ldots p_n) \) for n messages, its information (aka H or entropy) is:
 \[I(P) = - (p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n)) \]
Entropy of a distribution

\[I(P) = -(p_1 \times \log(p_1) + p_2 \times \log(p_2) + \ldots + p_n \times \log(p_n)) \]

• Examples:
 – If P is (0.5, 0.5) then \(I(P) = 0.5 \times 1 + 0.5 \times 1 = 1 \)
 – If P is (0.67, 0.33) then \(I(P) = -(2/3 \times \log(2/3) + 1/3 \times \log(1/3)) = 0.92 \)
 – If P is (1, 0) then \(I(P) = 1 \times 1 + 0 \times \log(0) = 0 \)

• More uniform probability distribution, greater its information: more information is conveyed by a message telling you which event actually occurred

• Entropy is the average number of bits/message needed to represent a stream of messages
Example: Huffman code

• In 1952 MIT student David Huffman devised (for a homework assignment!) a coding scheme that’s optimal when all data probabilities are powers of 1/2

• A **Huffman code** can be built as followings:
 – Rank symbols in order of probability of occurrence
 – Successively combine 2 symbols of lowest probability to form new symbol; eventually we have binary tree where each node is probability of nodes beneath it
 – Trace path to each leaf, noticing direction at each node
Huffman code example

M P
A .125
B .125
C .25
D .5
If we use this code to many messages (A, B, C or D) with this probability distribution, then, over time, the average bits/message should approach 1.75.
Information for classification

If set T of records is divided into disjoint exhaustive classes \((C_1, C_2, \ldots, C_k)\) by value of class attribute, then information needed to identify class of an element of T is:

\[
\text{Info}(T) = I(P)
\]

where P is the probability distribution of partition \((C_1, C_2, \ldots, C_k)\):

\[
P = (|C_1|/|T|, |C_2|/|T|, \ldots, |C_k|/|T|)
\]

High information

C1 C2 C3

Lower information

C1 C2 C3
Information for classification II

If we further divide T wrt attribute X into sets $\{T_1,T_2, \ldots, T_n\}$, the information needed to identify class of an element of T becomes the weighted average of the information needed to identify the class of an element of T_i, i.e. the weighted average of $\text{Info}(T_i)$:

$$\text{Info}(X,T) = \sum \frac{|T_i|}{|T|} \ast \text{Info}(T_i)$$

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information gain

• \(\text{Gain}(X,T) = \text{Info}(T) - \text{Info}(X,T) \) is difference of
 – info needed to identify element of \(T \) and
 – info needed to identify element of \(T \) after value of attribute \(X \) known
• This is gain in information due to attribute \(X \)
• Used to rank attributes and build DT where each node uses attribute with greatest gain of those not yet considered in path from root
• Intent: create small DTs to minimize questions
Computing Information Gain

Should we ask about restaurant type or how many patrons there are?

- $I(T) = ?$
- $I(Pat, T) = ?$
- $I(Type, T) = ?$

Gain (Patrons, T) = ?
Gain (Type, T) = ?

$I(P) = -(p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n))$
Computing information gain

\[I(T) =\]
\[= - (\frac{1}{2} \log 0.5 + \frac{1}{2} \log 0.5) \]
\[= 0.5 + 0.5 = 1 \]

\[I(\text{Pat, T}) =\]
\[= \frac{2}{12} (0) + \frac{4}{12} (0) + \frac{6}{12} (- (\frac{4}{6} \log 4/6 + \frac{2}{6} \log 2/6)) \]
\[= \frac{1}{2} (\frac{2}{3} \times 0.6 + \frac{1}{3} \times 1.6) \]
\[= 0.47 \]

\[I(\text{Type, T}) =\]
\[= \frac{2}{12} (1) + \frac{2}{12} (1) + \frac{4}{12} (1) + \frac{4}{12} (1) = 1 \]

Gain (Patrons, T) = 1 - 0.47 = 0.53
Gain (Type, T) = 1 - 1 = 0

\[I(P) = - (p_1 \log(p_1) + p_2 \log(p_2) + \ldots + p_n \log(p_n)) \]
How well does it work?

Case studies show that decision trees often at least as accurate as human experts

– Study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time; DT classified 72% correct

– British Petroleum designed DT for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system

– Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
Extensions of ID3

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- **C4.5**: extension of ID3 accounting for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, etc.
Real-valued data?

• Select thresholds defining intervals so each becomes a discrete value of attribute
• Use heuristics: e.g., always divide into quartiles
• Use domain knowledge: e.g., divide age into infant (0-2), toddler (3-5), school-aged (5-8)
• Or treat this as another learning problem
 – Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 – E.g., try midpoint between every pair of values
Noisy data?

Many kinds of *noise* can occur in training data

• Two examples have same attribute/value pairs, but different classifications
• Some attribute values wrong due to errors in the data acquisition or preprocessing phase
• Classification is wrong (e.g., + instead of -) because of some error
• Some attributes irrelevant to decision-making, e.g., color of a die is irrelevant to its outcome
Overfitting 😞

• *Overfitting* occurs when a statistical model describes random error or noise instead of underlying relationship

• If hypothesis space has many dimensions (many attributes) we may find **meaningless regularity** in the data that is irrelevant to true, important, distinguishing features

 Students with an *m* in first name, born in July, & whose SSN digits sum to an odd number get better grades in CMSC 471

• If we have too little training data, even a reasonable hypothesis space can overfit
Overfitting

• Fix by by removing irrelevant features
 – E.g., remove ‘year observed’, ‘month observed’, ‘day observed’, ‘observer name’ from feature vector

• Fix by getting more training data

• Fix by pruning lower nodes in the decision tree
 – E.g., if gain of best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes
Pruning decision trees

- Pruning a decision tree is done by replacing a whole subtree by a leaf node.
- Replacement takes place if the expected error rate in the subtree is greater than in the single leaf, e.g.,
 - Training: 1 training red success and 2 training blue failures
 - Test: 3 red failures and one blue success
 - Consider replacing this subtree by a single Failure node.
- After replacement, only 2 errors instead of 5.
Converting decision trees to rules

• Easy to get rules from decision tree: write rule for each path from the root to leaf

• Rule’s left-hand side built from the label of the nodes & labels of arcs

• Resulting rules set can be simplified:
 – Let LHS be the left hand side of a rule
 – LHS’ obtained from LHS by eliminating some conditions
 – Replace LHS by LHS' in this rule if the subsets of the training set satisfying LHS and LHS' are equal
 – A rule may be eliminated by using meta-conditions such as “if no other rule applies”
Summary: decision tree learning

• Widely used learning methods in practice for problems with relatively few features

• Strengths
 – Fast and simple to implement
 – Can convert result to a set of easily interpretable rules
 – Empirically valid in many commercial products
 – Handles noisy data
 – Easy for people to understand

• Weaknesses
 – Univariante splits/partitioning using only one attribute at a time so limits types of possible trees
 – Large decision trees may be hard to understand
 – Requires fixed-length feature vectors
 – Non-incremental (i.e., batch method)