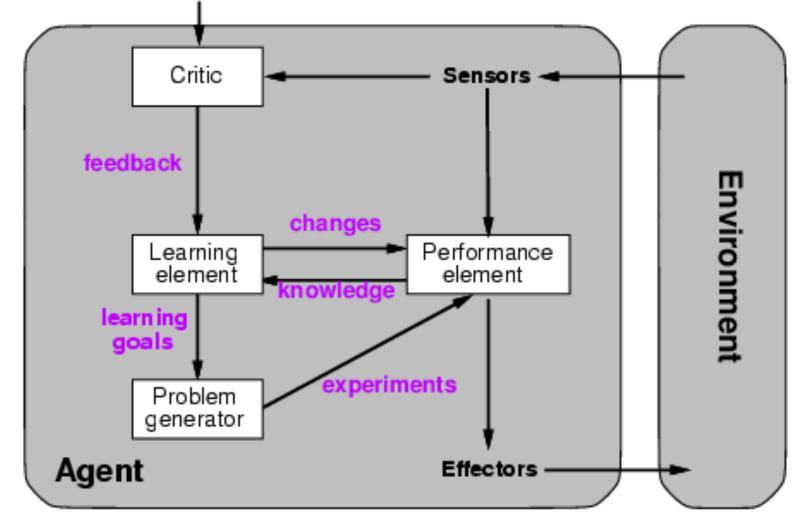

Machine Learning overview Chapter 18, 21

Why study learning?

- Understand and improve efficiency of human learning
 - Use to improve methods for teaching and tutoring people (e.g., better computer-aided instruction)
- **Discover** new things or structure previously unknown
 - Examples: data mining, scientific discovery
- Fill in skeletal or incomplete specifications in a domain
 - Large, complex systems can't be completely built by hand & require dynamic updating to incorporate new information
 - Learning new characteristics expands the domain or expertise and lessens the "brittleness" of the system
- Build agents that can **adapt** to users, other agents, and their environment

AI & Learning Today

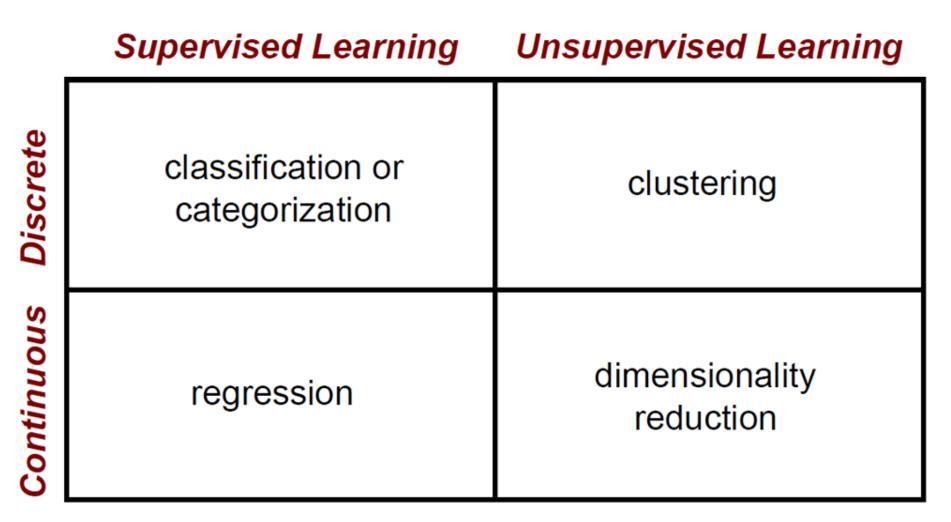

- Neural network learning was popular in 50s and 60s – Marvin Minsky did neural networks for his dissertation
- Replaced in 60s & 70s with paradigm based on manually encoding and using symbolic knowledge cf <u>Perceptrons</u>, Minsky & Papet book showing limitations of the perceptron model of neural networks
- In the 90s, more data and the Web drove interest in new statistical machine learning (ML) techniques and new data mining applications
- Today, ML techniques & big data play an important role almost all successful intelligent systems

Machine Leaning Successes

- Games: chess, go, poker, ...
- Sentiment analysis
- Spam detection
- Machine translation, spoken language understanding, named entity detection
- Autonomous vehicles
- Motion recognition (Microsoft X-Box)
- Understanding digital images
- Recommender systems (Netflix, Amazon)
- Credit card fraud detection

A general model of learning agents

Performance standard


Many paradigms for machine learning

- **Rote learning**: 1-1 mapping from inputs to stored representation, learning by memorization, association-based storage & retrieval
- Induction: Use specific examples to reach general conclusions
- **Clustering**: Unsupervised discovery of natural groups in data
- Analogy: Find correspondence between different representations
- **Discovery**: Unsupervised, specific goal not given
- Genetic algorithms: Evolutionary search techniques, based on an analogy to survival of the fittest
- **Reinforcement** Feedback (positive or negative reward) given at the end of a sequence of steps

What we will and won't cover

- We'll look at a few popular machine learning problems and algorithms
 - -Take CMSC 478/678 Machine Leaning for more
 - -Use online resources & experiment on your own
- We'll focus on when/how to use techniques and only touch on how/why they work
- We'll cover basic methodology and evaluation
- We'll use <u>Weka</u> platform for examples & demos
 - Great for exploration and learning

Machine Learning Problems

Supervised learning

- Given training examples of inputs & corresponding outputs, produce "correct" outputs for new inputs
- Two imnportant scenarios:
 - Classification: outputs typically labels (goodRisk, badRisk); learn a decision boundary that separates classes
 - Regression: aka "curve fitting" or "function approximation." Learn a continuous input-output mapping from (possibly noisy) examples

Unsupervised Learning

Given only *unlabeled* data as input, learn some sort of structure, e.g.:

- Clustering: group Facebook friends based on similarity of posts and friends
- Embeddings: Find sets of words whose meanings are related (e.g., doctor, hospital)
- Topic modelling: Induce N topics and words most common in documents about each

Weka: Waikato Environment for Knowledge Analysis

Open source Java software for ML and datamining http://cs.waikato.ac.nz/ml/weka/

		• • • •			eka Explorer		
	Preprocess C	lassify Cluster Associa	ate Select attributes Visualize	•			
	Open file	Open URL	Open DB Ge	enerate Und	o Edit	Save	
	Filter						
	Choose Dis	scretize -B 3 -M -1.0 -R	1			Apply	
	Current relation			Left-click to edit propertie	s for this object, right-c	lick/Alt+Shift+left-click for m	
🔴 😑 🔵 Weka GUI Chooser		npg	Attributes: 8 Sum of weights: 240	Name: mpg Missing: 0 (0%)	Distinct: 92	Type: Numeric Unique: 55 (23%)	
<u>Program Visualization Tools H</u> elp				Statistic	Value		
Weka, a native bird of New Zealand Waikato Environment for Knowledge Analysis Version 3.8.0 (c) 1999 - 2016 The University of Waikato Hamilton, New Zealand	Explorer Experimenter KnowledgeFlow Workbench Simple CLI	None e ders lacement epower ht leration n	Invert Pattern	Minimum Maximum Mean StdDev Class: origin (Nom)	9 44.6 23.006 7.777	Visualize Al	
	Status OK	Remove	:	9	26.8	14 4 Log	
	UK						