Plan graphs &
GraphPlan &
SATPlan

Chapter 11.4-11.7

Some material adapted from slides by Jean-Claude Latombe / Lise Getoor
GraphPlan: Basic idea

• Construct a *planning graph* that encodes constraints on possible plans

• Use graph to constrain search for a valid plan

• Planning graph can be built for each problem in a relatively short time

• Extract a solution from planning graph
Planning graph

- Directed, **leveled graph** with alternating layers of nodes

- Odd layers (**state levels**) represent candidate propositions that could possibly hold at step i

- Even layers (**action levels**) represent candidate actions that could possibly be executed at step i, including maintenance actions [do nothing]

- **Arcs** represent **preconditions, adds and deletes**

- Can only execute one real action at a step, but the data structure keeps track of **all actions & states that are possible**
GraphPlan properties

• STRIPS operators: conjunctive preconditions, no conditional or universal effects, no negations
 – Planning problem must be convertible to propositional representation
 – NO continuous variables, temporal constraints, ...
 – Problem size grows exponentially

• Finds “shortest” plans (by some definition)

• Sound, complete, and will terminate with failure if there is no plan
Having your cake & eating it too

Init(Have(Cake) ∧ ¬Eaten(Cake))

Goal(Have(Cake) ∧ Eaten(Cake))

Action(Eat(Cake))
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake))
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake)
What actions and what literals?

• Add an action in level A_i if *all* of its preconditions are present in level S_i

• Add a literal in level S_i if it is the effect of *some* action in level A_{i-1} (*including no-ops*)

• Level S_0 has all of the literals from initial state
Planning Graph for Cake Example

S_0

Have(Cake)

$\neg \text{Eaten(Cake)}$

• Level S_0 has all literals from initial state
Planning Graph for Cake Example

- Level S_0 has all literals from initial state.
- Level A_0 has all actions whose preconditions are satisfied in S_0, including no-ops.
• Level S_0 has all literals from initial state
• Level A_0 has all actions whose preconditions are satisfied in S_0, including no-ops
• Actions connect preconditions to effects
• Gray arcs connect propositions that are mutex (mutually exclusive) & actions that are mutex
Mutex Arcs

- Mutex arc between two actions indicates that it is impossible to perform the actions in parallel.
- Mutex arc between two literals indicates that it is impossible to have these both true at this stage.
Computing mutexes

• Mutex actions
 – Inconsistent effects: two actions that lead to inconsistent effects
 – Interference: an effect of first action negates precondition of other action
 – Competing needs: a precondition of first action is mutex with a precondition of second action

• Mutex literals
 – one literal is negation of the other one
 – Inconsistency support: each pair of actions achieving the two literals are mutually exclusive
• Actions connect preconditions to effects
• Gray arcs connect propositions that are mutex
• Actions at level A_i must have support from a set of literals in state S_i that have no mutex relations among themselves
Planning Graph for Cake Example

- Actions at level A_i must have support from a set of literals in state S_i that have no mutex relations among themselves.
- Stop when the set of literals does not change.
• If all of the literals in the goal are in the final state and are non-mutex ...
• We can try to extract a plan from the plan graph
GraphPlan

function GRAPHPLAN(problem) returns solution or failure

 graph ← INITIAL-PLANNING-GRAPH(problem)
 goals ← CONJUNCTS(problem.GOAL)
 nogoods ← an empty hash table
 for t = 0 to ∞ do
 if goals all non-mutex in S_t of graph then
 solution ← EXTRACT-SOLUTION(graph, goals,
 NUMLEVELS(graph), nogoods)
 if graph and nogoods have both leveled off then return failure
 graph ← EXPAND-GRAPH(graph, problem)

From Fig. 10.9, p. 383
Spare Tire Problem

Init(Tire(Flat) \land Tire(Spare) \land At(Flat,Axle) \land At(Spare,Trunk))

Goal(At(Spare,Axle))

Action(Remove(obj,loc),
 PRECOND: At(obj,loc),
 EFFECT: \neg At(obj,loc) \land At(obj,Ground))

Action(PutOn(t, Axle),
 PRECOND: Tire(t) \land At(t,Ground) \land \neg At(Flat,Axle),
 EFFECT: \neg At(t,Ground) \land At(t,Axle))

Action(LeaveOvernight,
 PRECOND: \emptyset,
 EFFECT: \neg At(Spare,Ground) \land \neg At(Spare,Axle) \land \neg At(Spare,Trunk) \land \neg At(Flat,Ground) \land \neg At(Flat,Axle) \land \neg At(Flat,Trunk))

From Fig. 10.2, p. 370
Spare Tire Planning Graph

From Fig. 10.10, p. 384
Planning graph for heuristic search

• Using the planning graph to estimate the number of actions to reach a goal

• If a literal does not appear in the final level of the planning graph, then there is no plan that achieve this literal!
 \[h = \infty \]
Heuristics

- **max-level**: take the maximum level where any literal of the goal first appears
 - admissible

- **level-sum**: take the sum of the levels where any literal of the goal first appears
 - not admissible, but generally efficient (specially for independent subplans)

- **set-level**: take the minimum level where all the literals of the goal appear and are free of mutex
 - admissible
BlackBox Planner

STRIPS-based plan representation
↓
Planning graph
↓
CNF representation
↓
CSP/SAT solver
↓
CSP solution
↓
Plan