
Planning
Chapter 11.1-11.3

Some material adopted from notes 
by Andreas Geyer-Schulz

and Chuck Dyer



Overview
• What is planning?
• Approaches to planning

– GPS / STRIPS
– Situation calculus formalism [revisited]
– Partial-order planning



Blocks World Planning
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Blocks world
The blocks world is a micro-world consisting of a 
table, a set of blocks and a robot hand
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

Typical representation uses a logic notation:
ontable(b) ontable(d)
on(c,d)      holding(a)
clear(b)     clear(c)

https://en.wikipedia.org/wiki/Blocks_world


Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)
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Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal state:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

assertions
describing
a state

atomic 
robot 
actions



Planning problem
•Find sequence of actions to achieve goal state

when executed from initial state given
– set of possible primitive actions
– initial state description
– goal state description or predicate

•compute plan as sequence of action instances 
that, when executed in initial state, achieves the 
goal state

•States usually specified as conjunction of 
conditions, e.g., ontable(a) Ù on(b, a)



Planning vs. problem solving
• Planning and problem solving methods can often 

solve similar problems
• Planning is more powerful and efficient because of 

the representations and methods used
• States, goals, and actions are decomposed into 

sets of sentences (usually in first-order logic)
• Search often proceeds through plan space rather 

than state space (though there are also state-
space planners)

• Sub-goals can be planned independently, reducing 
the complexity of the planning problem



Typical simplifying assumptions
• Atomic time: Each action is indivisible 
• No concurrent actions: but actions need not be 

ordered w.r.t each other in the plan
• Deterministic actions: action results completely 

determined — no uncertainty in their effects 
• Agent is the sole cause of change in the world 
• Agent is omniscient with complete knowledge of 

the state of the world 
• Closed world assumption: everything known to be 

true in world included in state description and 
anything not listed is false



Blocks world
The blocks world consists of a table, a set of blocks and 
a robot hand
Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on

the table
– The hand can only hold one block

Typical representation:
ontable(b) ontable(d)
on(c,d)      holding(a)
clear(b)     clear(c)

Meant to be a simple model!



Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)
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A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)



Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)



Major approaches
•Planning as search
•GPS / STRIPS
•Situation calculus
•Partial order planning
•Hierarchical decomposition (HTN planning)
•Planning with constraints (SATplan, Graphplan)
•Reactive planning



Planning as Search
•Actions: generate successor states
•States: completely described & only used 

for successor generation, heuristic fn. 
evaluation & goal testing

•Goals:  represented as goal test and using a 
heuristic function

•Plan representation: unbroken sequences 
of actions forward from initial states or 
backward from goal state



�Get a quart of milk, a bunch of bananas
and a variable-speed cordless drill.�

Treating planning as a search 
problem isn’t very efficient



General Problem Solver
• The General Problem Solver (GPS)

system was an early  planner

(Newell, Shaw, and Simon, 1957) 

• GPS generated actions that reduced the difference between 

some state and a goal state

• GPS used Means-Ends Analysis

– Compare given to desired states; select best action to do next

– Table of differences identifies actions to reduce types of differences

• GPS was a state space planner: operated in domain of state 

space problems specified by initial state, some goal states, 

and set of operations

• Introduced general way to use domain knowledge to select 

most promising action to take next

https://en.wikipedia.org/wiki/General_Problem_Solver


Situation calculus planning
•Intuition: Represent planning problem 

using first-order logic
–Situation calculus lets us reason about 

changes in the world
–Use theorem proving to find action 

sequence, when applied to initial 
situation leads to desired result

•How �neats� approach the problem



Situation calculus
•Initial state: logical sentence about (situation) S0

At(Home, S0) Ù ¬Have(Milk, S0) Ù ¬ Have(Bananas, S0) Ù ¬ Have(Drill, S0)

•Goal state: 
($s) At(Home,s) Ù Have(Milk,s) Ù Have(Bananas,s) Ù Have(Drill,s)

•Actions describe how world changes: 
"(a,s) Have(Milk,Result(a,s)) Û
((a=Buy(Milk) Ù At(Grocery,s)) Ú (Have(Milk, s) Ù a ¹ Drop(Milk)))

•Result(a,s) names situation resulting from doing action a 
in situation s

•Action sequences: Result'(l,s) is result of executing list of 
actions (l) starting in s:
("s) Result'([],s) = s

("a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))



Situation calculus II
•Solution is plan that when applied to initial 

state yields situation satisfying the goal: 
At(Home, Result'(p,S0)) 
Ù Have(Milk, Result'(p,S0))
Ù Have(Bananas, Result'(p,S0))
Ù Have(Drill, Result'(p,S0))

•We expect a plan (i.e., variable assignment 
through unification) such as: 

p = [Go(Grocery), Buy(Milk), Buy(Bananas),
Go(HardwareStore), Buy(Drill), Go(Home)]



Situation calculus: Blocks world
• A situation calculus rule for the blocks world

Clear (X, Result(A,S)) «
[Clear (X, S) Ù

(¬(A=Stack(Y,X) Ú A=Pickup(X))
Ú (A=Stack(Y,X) Ù ¬(holding(Y,S))
Ú (A=Pickup(X) Ù ¬(handempty(S) Ù ontable(X,S) Ù clear(X,S))))]
Ú [A=Stack(X,Y) Ù holding(X,S) Ù clear(Y,S)]
Ú [A=Unstack(Y,X) Ù on(Y,X,S) Ù clear(Y,S) Ù handempty(S)]
Ú [A=Putdown(X) Ù holding(X,S)]

• Translation: A block is clear if (a) in previous state it was clear & 
we didn’t pick it up or stack something on it, or (b) we stacked it 
on something else, or (c) something was on it that we unstacked, 
or (d) we were holding it and we put it down.

• Whew!!! There’s gotta be a better way!



Situation calculus planning: Analysis
•Fine in theory, but problem solving (search) is 

exponential in worst case
•Resolution theorem proving only finds a proof 

(plan), not necessarily a good plan
•So, restrict language and use special-purpose 

algorithm (a planner) rather than general 
theorem prover

•Planning is a common task for intelligent 
agents, so it’s reasonable to have a special 
subsystem for it



Shakey the robot
First general-purpose mobile robot to be able 
to reason about its own actions

Shakey: Experiments in Robot Plan-
ning and Learning (1972, 24 min)

Shakey the Robot: 1st Robot 
to Embody Artificial Intelli-
gence (2017, 6 min.)



Strips planning representation
• Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner

• A State is a conjunction of ground literals

at(Home) Ù ¬have(Milk) Ù ¬have(bananas) ...

• Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified

at(?x) Ù have(Milk) Ù have(bananas) ...

• Need not fully specify state 

– Non-specified conditions either don’t-care or assumed false 

– Represent many cases in small storage 

– May only represent changes in state rather than entire 
situation  

• Unlike theorem prover, not seeking whether goal is true, but is 

there a sequence of actions to attain it 

Shakey the robot

https://en.wikipedia.org/wiki/STRIPS
https://en.wikipedia.org/wiki/Shakey_the_robot


Operator/action representation
•Action operators have three components:

–Action description 

–Precondition: conjunction of positive literals 

–Effect: conjunction of positive or negative literals describing 
how situation changes when operator is applied 

•Example:
Op[Action:  Go(there), 

Precond:  At(here) Ù Path(here,there), 
Effect:  At(there) Ù ¬At(here)]

•All variables are universally quantified 

•Situation variables are implicit
–preconditions must be true in the state immediately before 

operator is applied; effects are true immediately after

Go(there)

At(here) ,Path(here,there)

At(there) , ¬At(here)



Blocks world operators
• Classic basic operations for the blocks world

– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

• Each represented by 
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints

• For example stack(X,Y):
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])



Blocks world operators (Prolog)

operator(stack(X,Y), 
[holding(X), clear(Y)],
[handempty, on(X,Y), clear(X)],
[holding(X), clear(Y)],
[X¹Y, Y¹table, X¹table]).

operator(pickup(X),
[ontable(X), clear(X), handempty],
[holding(X)],
[ontable(X), clear(X), handempty],
[X¹table]).

operator(unstack(X,Y), 
[on(X,Y), clear(X), handempty],
[holding(X), clear(Y)],
[handempty, clear(X), on(X,Y)],
[X¹Y, Y¹table, X¹table]).

operator(putdown(X), 
[holding(X)],
[ontable(X), handempty, clear(X)],
[holding(X)],
[X¹table]).

operator(op, preconditions, adds, deletes, constraints)



STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with 

current goal on top

• If current goal not satisfied by present state, find 
operator that adds it and push operator and its 
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an operator is on top stack, record 

application of that operator on plan sequence and 
use operator’s add and delete lists to update  
current state



Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)



Strips in Prolog
% strips(+Goals, +InitState, -Plan)
strips(Goal, InitState, Plan):-
strips(Goal, InitState, [],  _, RevPlan),
reverse(RevPlan, Plan).

% strips(+Goals,+State,+Plan,-NewState, NewPlan )

% Finished if each goal in Goals is true 
% in current State.
strips(Goals, State, Plan, State, Plan) :-
subset(Goals,State).

strips(Goals, State, Plan, NewState, NewPlan):-
% Goal is an unsatisfied goal.
member(Goal, Goals),
(\+ member(Goal, State)),
% Op is an Operator with Goal as a result.
operator(Op, Preconditions, Adds, Deletes,_),
member(Goal,Adds),
% Achieve the preconditions
strips(Preconditions, State, Plan, TmpState1, 

TmpPlan1), 
% Apply the Operator
diff(TmpState1, Deletes, TmpState2),
union(Adds, TmpState2, TmpState3).
% Continue planning.
strips(GoalList, TmpState3, [Op|TmpPlan1], 

NewState, NewPlan).



Trace (Prolog)
strips([on(b,c),on(a,b),ontable(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]

strips([holding(b),clear(c)],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]

strips([ontable(b),clear(b),handempty],[clear(a),clear(b),clear(c),ontable(a),ontable(b),ontable(c),handempty],[])
Applying pickup(b) 
strips([holding(b),clear(c)],[clear(a),clear(c),holding(b),ontable(a),ontable(c)],[pickup(b)])

Applying stack(b,c) 
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

strips([holding(a),clear(b)],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),pickup(b)])
Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

strips([ontable(a),clear(a),handempty],[handempty,clear(a),clear(b),ontable(a),ontable(c),on(b,c)],[stack(b,c),picku
p(b)])

Applying pickup(a) 
strips([holding(a),clear(b)],[clear(b),holding(a),ontable(c),on(b,c)],[pickup(a),stack(b,c),pickup(b)])

Applying stack(a,b) 
strips([on(b,c),on(a,b),ontable(c)],[handempty,clear(a),ontable(c),on(a,b),on(b,c)],[stack(a,b),pickup(a),stack(b,c),pickup(

b)])



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)



Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)



Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B
Plan:

??



Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• The �Sussman Anomaly� is the classic example of the goal 

interaction problem: 
– Solving on(A,B) first (via unstack(C,A), stack(A,B)) is undone 

when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))
– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS couldn’t handle this, although minor 
modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly


Sussman Anomaly

A B
C Initial state

Goal state

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
||Achieve clear(a) via unstack(_1584,a) with preconds: 
[on(_1584,a),clear(_1584),handempty]
||Applying unstack(c,a) 
||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)]
||Applying putdown(c) 
|Applying pickup(a) 
Applying stack(a,b) 
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]
|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]
||Achieve clear(b) via unstack(_5625,b) with preconds: 
[on(_5625,b),clear(_5625),handempty]
||Applying unstack(a,b) 
||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)]
||Applying putdown(a) 
|Applying pickup(b) 
Applying stack(b,c) 
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
|Applying pickup(a) 
Applying stack(a,b) 

From 
[clear(b),clear(c),ontable(a),ontable(b),on
(c,a),handempty]
To [on(a,b),on(b,c),ontable(c)]
Do:

unstack(c,a)
putdown(c)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

A
B
C



Sussman Anomaly
•Classic Strips assumed that once a goal had 

been satisfied it would stay satisfied
•Simple Prolog version selects any currently 

unsatisfied goal to tackle at each iteration
•This can handle this problem, at the 

expense of looping for other problems 
– e.g., achieving goal [on(a,b) , on (b,a)]

•What’s needed? A notion of protecting a 
sub-goal so it’s not undone by later steps



State-space planning
•STRIPS searches thru a space of situations (where 

you are, what you have, etc.)
– Plan is a solution found by �searching� through situations 

to get to goal

•Progression planners search forward from initial 
state to goal state
– Usually results in a high branching factor

•Regression planners search backward from goal
– OK if operators have enough information to go both ways
– Can reduce branching: you’re only considering things 

relevant to goal
– Handling a conjunction of goals is difficult (e.g., STRIPS)



Plan-space planning
• An alternative is to search through the space of plans, 

rather than situations
• Start from a partial plan which is expanded and 

refined until a complete plan is generated
• Refinement operators add constraints to the partial 

plan and modification operators for other changes
• We can still use STRIPS-style operators: 

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

could result in a partial plan of 
[ … RightShoe … LeftShoe …] 



Partial-order planning
• Linear planners build plans as totally ordered 

sequences of steps

• Non-linear planners (aka partial-order planners)
build plans as sets of steps with temporal 
constraints 
– constraints like S1<S2 if step S1 must come before S2

• One refines a partially ordered plan (POP) by either:
– adding a new plan step, or

– adding a new constraint to the steps already in the plan

• A POP can be linearized (converted to a totally 
ordered plan) by topological sorting

https://en.wikipedia.org/wiki/Topological_sorting


Some example domains

We’ll use some simple problems with a real world 
flavor to illustrate planning problems and 
algorithms
• Putting on your socks and shoes in the morning

– Actions like put-on-left-sock, put-on-right-shoe
• Planning a shopping trip involving buying several 

kinds of items
– Actions like go(X), buy(Y)



A simple graphical notation

Start Start

Initial    State

Goal      State

Finish Finish

LeftShoeOn RightShoeOn

(a) (b)



Partial Order Plan vs. Total Order Plan

The space of POPs is smaller than TOPs and hence involve less search



Least commitment
•Non-linear planners embody the principle of 

least commitment
– only choose actions, orderings & variable bindings  

absolutely necessary, postponing other decisions
– avoids early commitment to decisions that don’t 

really matter
•Linear planners always choose to add a plan 

step in a particular place in the sequence 
•Non-linear planners choose to add a step and 

possibly some temporal constraints



Real-world planning domains

• Real-world domains are complex and don’t satisfy 
assumptions of STRIPS or methods

• Some of the characteristics we may need to handle: 
– Modeling and reasoning about resources
– Representing and reasoning about time
– Planning at different levels of abstractions
– Conditional outcomes of actions
– Uncertain outcomes of actions
– Exogenous events
– Incremental plan development
– Dynamic real-time re-planning

} Scheduling

} HTN planning

} Planning under uncertainty

https://en.wikipedia.org/wiki/Hierarchical_task_network


Hierarchical decomposition
• Hierarchical decomposition, or hierarchical task 

network (HTN) planning, uses abstract operators
to incrementally decompose a planning problem 
from a high-level goal statement to a primitive 
plan network

• Primitive operators represent actions that are 
executable, and can appear in the final plan

• Non-primitive operators represent goals
(equivalently, abstract actions) that require 
further decomposition (or operationalization) to 
be executed

• There is no �right� set of primitive actions: One 
agent’s goals are another agent�s actions!



HTN planning: example



HTN operator: Example

OPERATOR decompose
PURPOSE: Construction
CONSTRAINTS: 

Length (Frame) <= Length (Foundation),
Strength (Foundation) > Wt(Frame) + Wt(Roof)

+ Wt(Walls) + Wt(Interior) + Wt(Contents)
PLOT: Build (Foundation)

Build (Frame)
PARALLEL

Build (Roof)
Build (Walls)

END PARALLEL
Build (Interior)



Planning summary
• Planning representations

– Situation calculus
– STRIPS representation: Preconditions and effects

• Planning approaches
– State-space search (STRIPS, forward chaining, ….)
– Plan-space search (partial-order planning, HTN, …)
– Constraint-based search (GraphPlan, SATplan, …)

• Search strategies
– Forward planning
– Goal regression 
– Backward planning
– Least-commitment
– Nonlinear planning


