Propositional and First-Order Logic

Chapter 7.4–7.8, 8.1–8.3, 8.5

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Logic roadmap overview

- Propositional logic
 - Problems with propositional logic
- First-order logic
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, wffs, axioms, theories, proofs, ...
 - Extensions to first-order logic
- Logical agents
 - Reflex agents
 - Representing change: situation calculus, frame problem
 - Preferences on actions
 - Goal-based agents

Disclaimer

"Logic, like whiskey, loses its beneficial effect when taken in too large quantities."

- Lord Dunsany

Propositional Logic: Review

Big Ideas

- Logic is a great knowledge representation language for many AI problems
- Propositional logic is the simple foundation and fine for many AI problems
- First order logic (FOL) is much more expressive as a knowledge representation (KR) language and more commonly used in AI
- Variations on FOL are common: horn logic, higher order logic, three-valued logic, probabilistic logic, fuzzy logic, etc.

Propositional logic syntax

- Logical constants: true, false
- Propositional symbols: P, Q, ... (aka atomic sentences)
- Parentheses: (...)
- Sentences are build with connectives:
 - ∧ and [conjunction]
 - ∨ or [disjunction]
 - \Rightarrow implies [
 - \Leftrightarrow is equivalent
 - not

- [disjunction] [implication/conditional/if]
- [biconditional/iff]
- [negation]
- Literal: atomic sentence or their negation: $P, \neg P$

Propositional logic syntax

- Simplest logic language in which a user specifies
 - -Set of propositional symbols (e.g., P, Q)
 - -What each means, e.g.: P: "It's hot", Q: "It's humid"
- A sentence (well formed formula) is defined as:
 - -Any symbol is a sentence
 - If S is a sentence, then -**S** is a sentence
 - -If S is a sentence, then (S) is a sentence
 - –If S and T are sentences, then so are (S \lor T), (S \land T), (S \rightarrow T), and (S \leftrightarrow T)
 - A sentence results from a finite number of applications of the rules

Examples of PL sentences

• (P \land Q) \rightarrow R

"If it is hot and humid, then it is raining"

 $\bullet \, \mathsf{Q} \to \mathsf{P}$

"If it is humid, then it is hot"

•Q

"It is humid."

We're free to choose better symbols, e.g.: Hot = "It is hot" Humid = "It is humid" Raining = "It is raining"

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**
- Given the truth values of all symbols in a sentence, it can be *evaluated* to determine its truth value (True or False)
- A model for a KB is a *possible world* an assignment of truth values to propositional symbols that makes each KB sentence true

Models for a KB

- KB: $[P \land Q \rightarrow R, Q \rightarrow P]$
- What are the sentences?
 - $P \land Q \rightarrow R$
 - $-Q \rightarrow P$
- What are the propositional variables?
 - P, Q, R
- What are the possible models?
 - Consider all possible assignments of T|F to P, Q, R
 - Check truth tables for consistency

P: it's hot Q: it's humid R: it's raining PQR FFF:OK : **OK** : NO '⊢ : **OK** : OK Η` : NO : **OK**

Models for a KB

- Add Q to the KB
- KB: $[P \land Q \rightarrow R, Q \rightarrow P, Q]$
- What are the sentences?
 - $P \land Q \rightarrow R$
 - $-Q \rightarrow P$
 - Q
- What are the propositional variables?
 - P, Q, R
- What are the possible models?
 - Consider all possible assignments of T|F to P, Q, R
 - Check truth tables for consistency

Since P & R are true in every KB model, the KB entails that P & R are True

More terms

- A valid sentence or tautology is a sentence that's True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining"
- An inconsistent sentence or contradiction is a sentence that's False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- P entails Q, written P |= Q, means that whenever
 P is True, so is Q
 - In all models in which P is true, Q is also true

Truth tables

- Truth tables are used to define meaning of logical connectives
- And to determine when a complex sentence is true given the values of the symbols in it

Truth tables for	r the five .	logical	connectives
		<u> </u>	

Р	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False T	Тпие	False	False	True	True
False True	True False	True False	False False	Тпие Тпие	True False	False False
Тгие	True	False	Тпие	Тпие	Тгие	Тгие

Example of a truth table used for a complex sentence

Р	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \ \Rightarrow \ P$
False	False	False	False	True
False	True	True	False	True
True	False	True	True	True
True	True	True	False	True

The implies connective: $\mathbf{P} \rightarrow \mathbf{Q}$

- $\bullet \rightarrow$ is a logical connective
- So $P \rightarrow Q$ is a **logical sentence** and has a truth value, i.e., is either true or false
- If we add this sentence to a KB, it can be used by an inference rule, <u>Modes Ponens</u>, to derive/infer/prove Q if P is also in the KB
- Given a KB where P=True and Q=True, we can derive/infer/prove that $P \rightarrow Q$ is True
- Note: $P \rightarrow Q$ is equivalent to $\sim P \lor Q$

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - P=Q=true
 - P=Q=false
 - P=true, Q=false
 - □ P=false, Q=true

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - ☑ P=Q=true
 - ☑ P=Q=false
 - P=true, Q=false
 - ☑ P=false, Q=true
- $\bullet\, {\rm We}\ {\rm can}\ {\rm get}\ {\rm this}\ {\rm from}\ {\rm the}\ {\rm truth}\ {\rm table}\ {\rm for} \rightarrow$
- Note: in FOL it's much harder to prove that a conditional true, e.g., prime(x) \rightarrow odd(x)

Inference rules

- Logical inference creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is **sound** if every sentence X it produces when operating on a KB logically follows from the KB

-i.e., inference rule creates no contradictions

- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB
 - -Note analogy to complete search algorithms

Sound rules of inference

Here are examples of sound rules of inference

Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	A, $A \rightarrow B$	В
And Introduction	А, В	$A \wedge B$
And Elimination	$A \wedge B$	A
Double Negation	$\neg \neg A$	A
Unit Resolution	A ∨ B, ¬B	A
Resolution	A ∨ B , ¬ B ∨ C	A ∨ C

Resolution

 <u>Resolution</u> is a valid inference rule producing a new clause implied by two clauses containing *complementary literals*

Literal: atomic symbol or its negation, i.e., P, ~P

- Amazingly, this is the only interference rule needed to build a sound & complete theorem prover
 - Based on proof by contradiction, usually called resolution refutation
- The resolution rule was discovered by <u>Alan</u> <u>Robinson</u> (CS, U. of Syracuse) in the mid 1960s

Resolution

- A KB is a set of sentences all of which are true, i.e., a conjunction of sentences
- To use resolution, put KB into <u>conjunctive</u> <u>normal form</u> (CNF)
 - Each sentence is a disjunction of one or more literals (positive or negative atoms)
- Every KB can be put into CNF, it's just a matter of rewriting its sentences using standard tautologies, e.g.:

 $-P \rightarrow Q \equiv ~P \lor Q$

Resolution Example

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- KB: $[P \rightarrow Q, Q \rightarrow R, Q \rightarrow S]$
- KB in CNF: [$^{P}\lor Q$, $^{Q}\lor R$, $^{Q}\lor S$]
- Resolve KB[0] and KB[1] producing: $\sim P \lor R$ (*i.e.*, $P \rightarrow R$)
- Resolve KB[0] and KB[2] producing: $\sim P \lor S$ (*i.e.*, $P \rightarrow S$)
- New KB: [~P∨Q , ~Q∨R, ~Q∨S, ~P∨R, ~P∨S]

Tautologies $(A \rightarrow B) \leftrightarrow (^{\sim}A \lor B)$ $(A \lor (B \land C)) \leftrightarrow$ $(A \lor B) \land (A \lor C)$

Soundness of resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg\beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тгие	False
False	False	Тпие	False	True	True
False	True	False	True	False	False
<u>False</u>	True	True	True	<u>True</u>	True
True	False	False	True	True	True
True	<u>False</u>	Тпие	True	<u>True</u>	True
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	True

From rightmost three columns of truth table, we see that $(\alpha \lor \beta) \land (\ \ \beta \lor \gamma) \rightarrow (\alpha \lor \gamma)$ is valid (i.e., always true regardless of truth values for α , β

and γ

Proving it's raining (1)

- A **proof** is a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule
- Last sentence is the **theorem** (also called goal or query) that we want to prove
- The weather problem using traditional reasoning

1 Hu	premise	"It's humid"
2 Hu→Ho	premise	"If it's humid, it's hot"
3 Ho	modus ponens(1,2)	"It's hot"
4 (Ho∧Hu)→R	premise	"If it's hot & humid, it's raining"
5 Ho∧Hu	and introduction(1,3)	"It's hot and humid"
6 R	modus ponens(4,5)	"It's raining"

Proving it's raining (2)

A simple proof procedure

This procedure generates new sentences from a KB

- 1. Convert all sentences in the KB to CNF
- 2. Find all pairs of sentences in KB with complementary literals that have not yet been resolved
- 3. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- Is it sound?
- Is it complete?
- Will it always terminate?

Resolution refutation

- 1. Add negation of goal to the KB
- 2. Convert all sentences in KB to CNF
- Find all pairs of sentences in KB with complementary literals that have not yet been resolved
- 4. If there are no pairs stop else resolve each pair, adding the result to the KB and go to 2
- If we derived an empty clause (i.e., a contradiction) then the conclusion follows from the KB
- If we did not, the conclusion cannot be proved from the KB

Horn* sentences

- A Horn sentence or <u>Horn clause</u> has the form: $P1 \land P2 \land P3 \dots \land Pn \rightarrow Qm \text{ where } n \ge 0, m \text{ in}\{0,1\}$
- Note: a conjunction of 0 or more symbols to left of
 → and 0-1 symbols to right
- Special cases:
 - n=0, m=1: P (assert P is true)
 - -n>0, m=0: $P \land Q \rightarrow$ (constraint: both P and Q can't be true)
 - n=0, m=0: (well, there is nothing there!)
- Put in CNF: each sentence is a disjunction of literals with at most one non-negative literal

 $(P \rightarrow Q) = (\neg P \lor Q)$

 $\neg P1 \lor \neg P2 \lor \neg P3 \ldots \lor \neg Pn \lor Q$

* After Alfred Horn

Significance of Horn logic

- We can also have horn sentences in FOL
- Reasoning with horn clauses is much simpler
 - Satisfiability of propositional KB (i.e., finding values for a symbols that will make it true) is NP complete
 - Restricting KB to horn sentences, satisfiability is in P
- For this reason, FOL Horn sentences are the basis for many rule-based languages, including <u>Prolog</u> and <u>Datalog</u>
- Horn logic can't handle, in a general way, negation and disjunctions

Problems with Propositional Logic

Propositional logic: pro and con

Advantages

- -Simple KR language good for many problems
- -Lays foundation for higher logics (e.g., FOL)
- Reasoning is decidable, though NP complete;
 efficient techniques exist for many problems

Disadvantages

- -Not expressive enough for most problems
- -Even when it is, it can very "un-concise"

PL is a weak KR language

- Hard to identify *individuals* (e.g., Mary, 3)
- Can't directly represent properties of individuals or relations between them (e.g., "Bill is tall")
- Generalizations, patterns, regularities hard to represent (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) represents this information via **relations**, **variables** & **quantifier**s, e.g.,
 - Every elephant is gray: $\forall x \text{ (elephant(x) } \rightarrow \text{gray(x))}$
 - There is a black swan: ∃ x (swan(X) ^ black(X))

PL Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

PL Example

• In PL we must create propositional symbols to stand for all or part of each sentence, e.g.:

P = "person"; Q = "mortal"; R = "Confucius"

• The above 3 sentences are represented as:

 $P \rightarrow Q; R \rightarrow P; R \rightarrow Q$

- The 3rd sentence is entailed by the first two, but we need an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes *person* and *mortal*
- Representing other individuals requires introducing separate symbols for each, with some way to represent the fact that all individuals who are "people" are also "mortal"

Hunt the Wumpus domain

• Some atomic propositions: S12 = There is a stench in cell (1,2) B34 = There is a breeze in cell (3,4) W22 = Wumpus is in cell (2,2) V11 = We've visited cell (1,1) OK11 = Cell (1,1) is safe

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
^{1,3} w:	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
^{1,2} А s ок	2,2 ОК	3,2	4,2	
1,1 V OK	2,1 B V OK	3,1 P!	4,1	

• Some rules:

• • •

 $\neg S22 \rightarrow \neg W12 \land \neg W23 \land \neg W32 \land \neg W21$ $S22 \rightarrow W12 \lor W23 \lor W32 \lor W21$ $B22 \rightarrow P12 \lor P23 \lor P32 \lor P21$ $W22 \rightarrow S12 \land S23 \land S23 \land W21$ $W22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$ $A22 \rightarrow V22$ $A22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$ $V22 \rightarrow OK22$

Hunt the Wumpus domain

- Eight variables for each cell, i.e.: A11, B11, G11, OK11, P11, S11, V11, W11
- Lack of variables requires giving similar rules for each cell!
- Ten rules (I think) for each

 $A11 \rightarrow \dots$ $W11 \rightarrow \dots$ \neg W11 \rightarrow ... $V11 \rightarrow \dots$ $S11 \rightarrow \dots$ $P11 \rightarrow ...$ \neg S11 \rightarrow ... $\neg P11 \rightarrow \dots$ $B11 \rightarrow \dots$ $\neg B11 \rightarrow \dots$

ľ	1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
	^{1,3} w:	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
	^{1,2} A S OK	2,2 ОК	3,2	4,2	
	1,1 V OK	^{2,1} B V OK	3,1 P!	4,1	

After third move

- We can prove that the Wumpus is in (1,3) using these four rules
- See R&N section 7.5 $(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$ $(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$ $(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$ $(R4) S12 \rightarrow W13 \lor W12 \lor W22 \lor W11$

Proving W13

(R1) \neg S11 $\rightarrow \neg$ W11 $\land \neg$ W12 $\land \neg$ W21 (R2) \neg S21 $\rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W22 $\land \neg$ W31 (R3) \neg S12 $\rightarrow \neg$ W11 $\land \neg$ W12 $\land \neg$ W22 $\land \neg$ W13 (R4) S12 \rightarrow W13 \lor W12 \lor W22 \lor W11

Apply MP with \neg S11 and R1:

 $\neg W11 \land \neg W12 \land \neg W21$

Apply And-Elimination to this, yielding 3 sentences:

¬ W11, ¬ W12, ¬ W21

Apply MP to ~S21 and R2, then apply And-elimination:

¬ W22, ¬ W21, ¬ W31

Apply MP to S12 and R4 to obtain:

 $W13 \lor W12 \lor W22 \lor W11$

Apply Unit Resolution on (W13 \vee W12 \vee W22 \vee W11) and \neg W11:

 $W13 \lor W12 \lor W22$

Apply Unit Resolution with (W13 \vee W12 \vee W22) and \neg W22:

 $W13 \vee W12$

Apply Unit Resolution with (W13 \vee W12) and \neg W12:

W13

QED

Propositional Wumpus hunter problems

- Lack of variables prevents stating more general rules, like these:
 - $\forall x, y V(x,y) \rightarrow OK(x,y)$
 - $\forall x, y S(x,y) \rightarrow W(x-1,y) \lor W(x+1,y) \dots$
- Change of the KB over time is difficult to represent
 - -In classical logic, a fact is true or false for all time
 - A standard technique is to index dynamic facts with the time when they're true
 - A(1, 1, t0)

-Thus we have a separate KB for every time point

Propositional logic summary

- Inference: process of deriving new sentences from old
 - Sound inference derives true conclusions given true premises
 - **Complete** inference derives all true conclusions from a set of premises
- Valid sentence: true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then, given its premise, its consequent can be derived
- Different logics make different **commitments** about what the world is made of and the kind of beliefs we can have
- **Propositional logic** commits only to existence of facts that may or may not be the case in the world being represented
 - Simple syntax and semantics suffices to illustrate the process of inference
 - Propositional logic can become impractical, even for very small worlds