

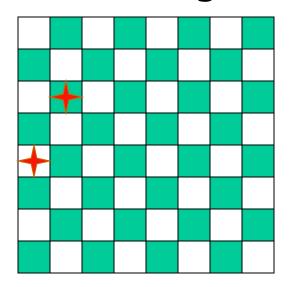
Russell & Norvig Ch. 6

Overview

- Constraint satisfaction is a powerful problemsolving paradigm
 - Problem: set of variables to which we must assign values satisfying problem-specific constraints
 - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
 - Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

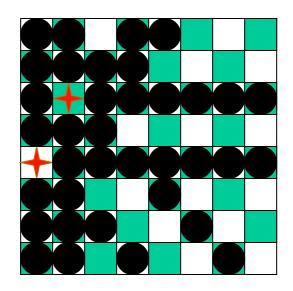
Place 8 queens on a chess board such That none is attacking another.



Generate-and-test, with no redundancies → "only" 88 combinations

8**8 is 16,777,216

Motivating example: 8-Queens



After placing these two queens, it's trivial to mark the squares we can no longer use

What more do we need for 8 queens?

- Not just a successor function and goal test
- But also
 - a means to propagate constraints imposed by one queen on others
 - an early failure test
- → Explicit representation of constraints and constraint manipulation algorithms

Informal definition of CSP

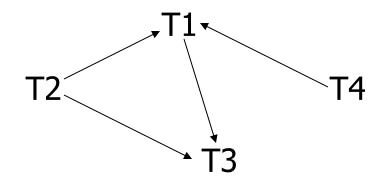
- CSP (<u>Constraint Satisfaction Problem</u>), given
 - (1) finite set of variables
 - (2) each with domain of possible values (often finite)
 - (3) set of constraints limiting values variables can take
- Solution: assignment of a value to each variable such that all constraints are satisfied
- Tasks: decide if a solution exists, find a solution, find all solutions, find "best solution" according to some metric (objective function)

Example: 8-Queens Problem

- Eight variables Xi, i = 1..8 where Xi is the row number of queen in column i
- Domain for each variable {1,2,...,8}
- Constraints are of the forms:
 - -No queens on same row Xi = k → Xj \neq k for j = 1..8, j \neq i
 - -No queens on same diagonal

 Xi = ki, Xj = kj → |i-j| \neq | ki kj | for j = 1..8, j \neq i

Example: Task Scheduling

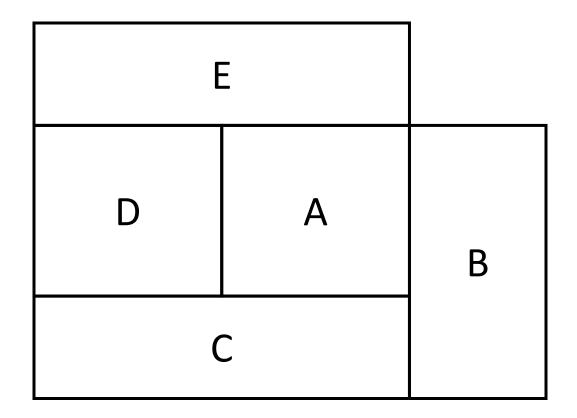


Examples of scheduling constraints:

- T1 must be done during T3
- T2 must be achieved before T1 starts
- T2 must overlap with T3
- T4 must start after T1 is complete

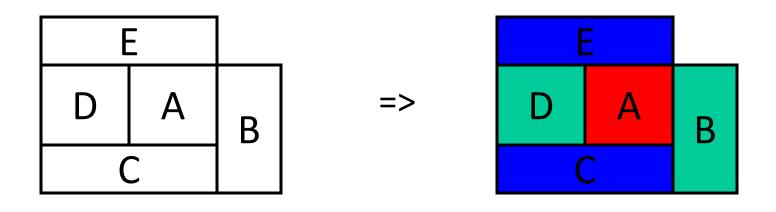
Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color



Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints: $A \neq B$, $A \neq C$, $A \neq E$, $A \neq D$, $B \neq C$, $C \neq D$, $D \neq E$
- A solution: A=red, B=green, C=blue, D=green, E=blue



Brute Force methods

- Finding a solution by a brute force search is easy
 - Generate and test is a weak method
 - Just generate potential combinations and test each
- Potentially very inefficient
 - With n variables where each can have one of 3 values, there are 3ⁿ possible solutions to check
- •There are ~190 countries in the world, which we can color using four colors
- •4¹⁹⁰ is a big number!

```
solve(A,B,C,D,E) :-
 color(A),
 color(B),
 color(C),
               generate
 color(D),
 color(E),
 not(A=B),
 not(A=B),
 not(B=C),
 not(A=C),
                 test
 not(C=D),
 not(A=E),
 not(C=D)
color(red).
color(green).
color(blue).
```

Example: SATisfiability

- Given a set of logic propositions containing variables, find an assignment of the variables to {false, true} that satisfies them
- For example, the two clauses:
 - $-(A \lor B \lor \neg C) \land (\neg A \lor D)$
 - -(equivalent to (C \rightarrow A) \vee (B \wedge D \rightarrow A)
 - are satisfied by
 - A = false, B = true, C = false, D = false
- <u>Satisfiability</u> is known to be <u>NP-complete</u>, so in worst case, solving CSP problems requires exponential time

Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

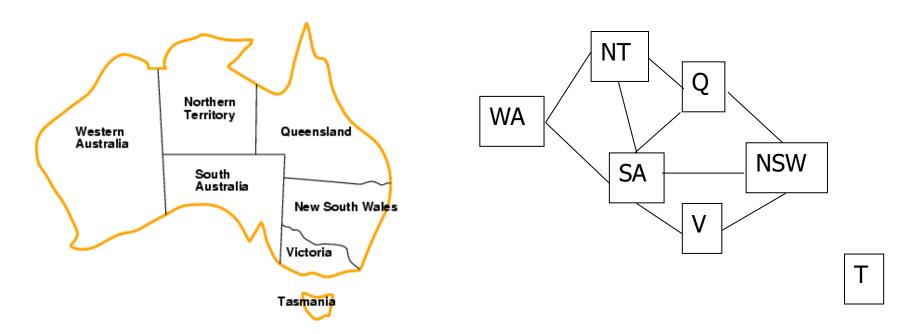
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Definition of a constraint network (CN)

A constraint network (CN) consists of

- Set of variables $X = \{x_1, x_2, ... x_n\}$
 - -with associate domains $\{d_1, d_2, ... d_n\}$
 - -domains are typically finite
- Set of constraints {c₁, c₂ ... c_m} where
 - each defines a predicate that is a relation over a particular subset of variables (X)
 - -e.g., C_i involves variables $\{X_{i1}, X_{i2}, ... X_{ik}\}$ and defines the relation $R_i \subseteq D_{i1} \times D_{i2} \times ... D_{ik}$

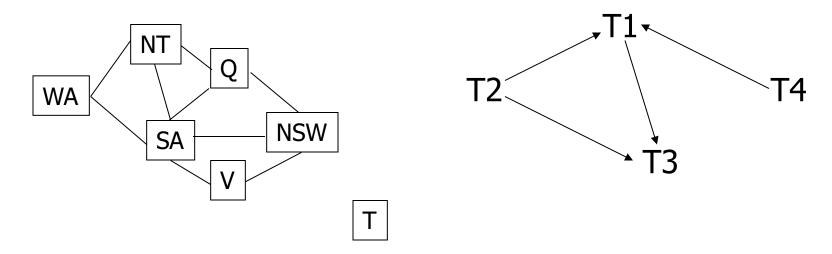
Running example: coloring Australia



- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables can have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

Unary & binary constraints most common

Binary constraints



- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints

Formal definition of a CN

- Instantiations
 - An instantiation of a subset of variables S is an assignment of a value (in its domain) to each variable in S
 - An instantiation is legal iff it violates no constraints
- A solution is a legal instantiation of all variables in the network

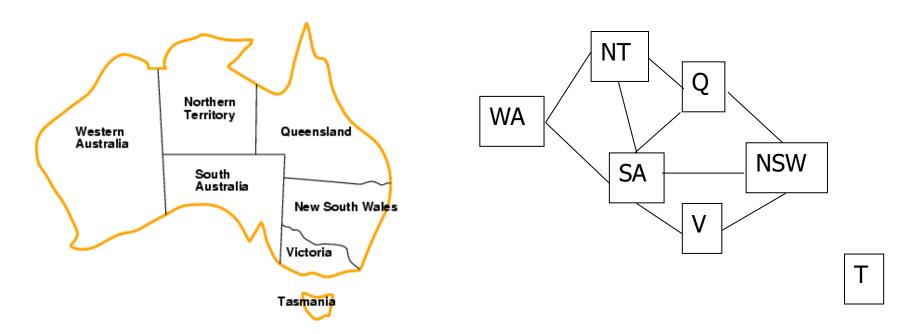
Typical tasks for CSP

- Solution related tasks:
 - –Does a solution exist?
 - -Find one solution
 - Find all solutions
 - -Given a metric on solutions, find best one
 - -Given a partial instantiation, do any of above
- Transform the CN into an equivalent CN that is easier to solve

Binary CSP

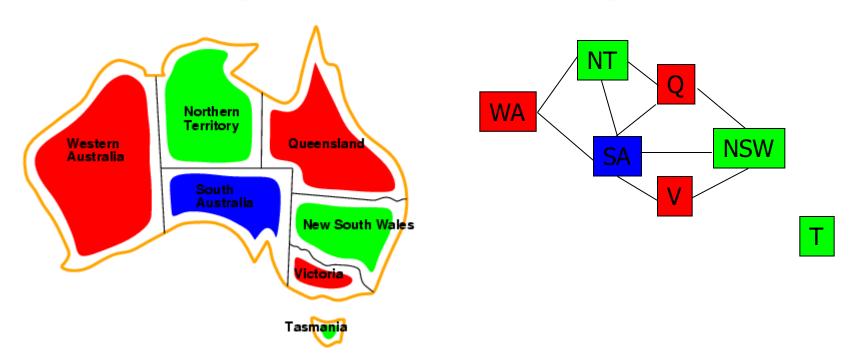
- A binary CSP is a CSP where all constraints are binary or unary
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- A binary CSP can be represented as a constraint graph, with a node for each variable and an arc between two nodes iff there's a constraint involving them
 - Unary constraints appear as self-referential arcs

Running example: coloring Australia



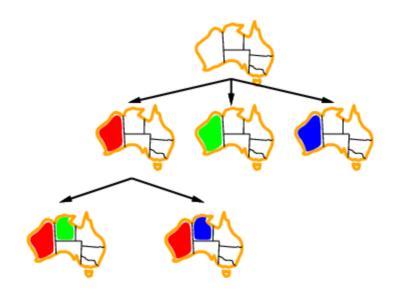
- Seven variables: {WA, NT, SA, Q, NSW, V, T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables can have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

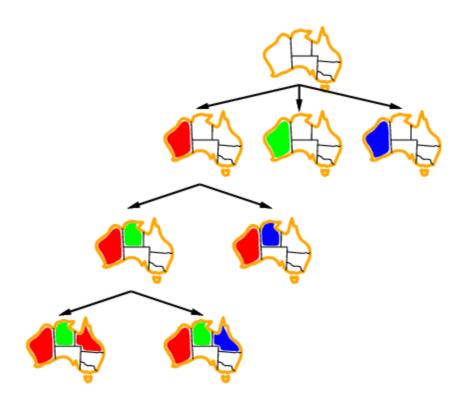
A running example: coloring Australia



- Solutions: complete & consistent assignments
- Here is one of several solutions
- For generality, constraints can be expressed as relations, e.g., describe WA ≠ NT a

{(red,green), (red,blue), (green,red), (green,blue), (blue,red),(blue,green)}





Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

- If a is complete then return a
- X ← select an unassigned variable
- D ← select an ordering for the domain of X
- For each value v in D do

If v is consistent with a then

- Add (X= v) to a
- result ← CSP-BACKTRACKING(a)
- If result ≠ failure then return result
- Remove (X= v) from a
- Return failure

Start with CSP-BACKTRACKING({})

Note: this is depth first search; can solve n-queens problems for $n \sim 25$

Problems with backtracking

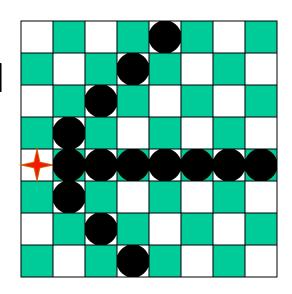
- Thrashing: keep repeating the same failed variable assignments
- Things that can help avoid this:
 - Consistency checking
 - -Intelligent backtracking schemes
- Inefficiency: can explore areas of the search space that aren't likely to succeed
 - -Variable ordering can help

Improving backtracking efficiency

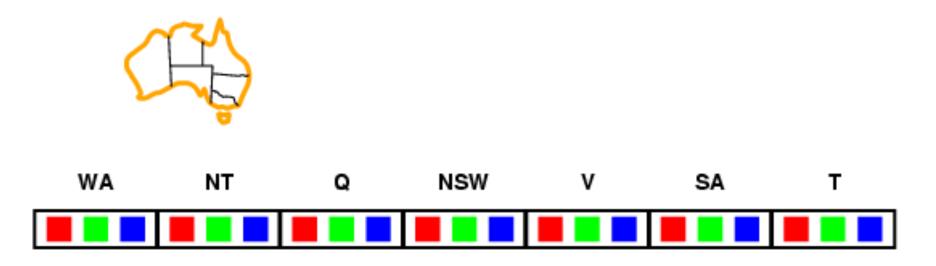
Here are some standard techniques to improve the efficiency of backtracking

- –Can we detect inevitable failure early?
- –Which variable should be assigned next?
- –In what order should its values be tried?

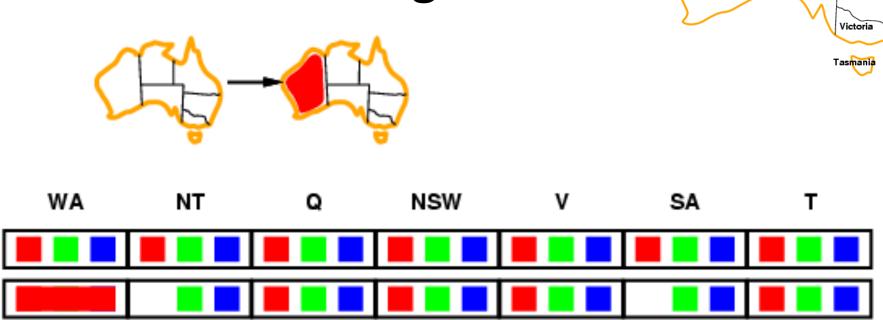
After variable X is assigned to value v, examine each unassigned variable Y connected to X by a constraint and delete values from Y's domain inconsistent with v



Using forward checking and backward checking roughly doubles the size of N-queens problems that can be practically solved



- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values



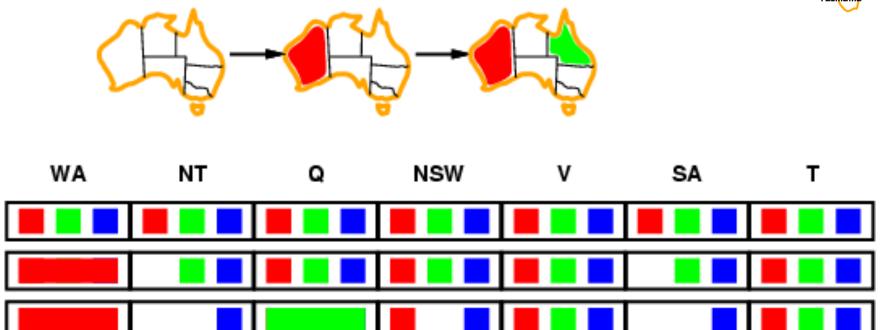
Northern Territory

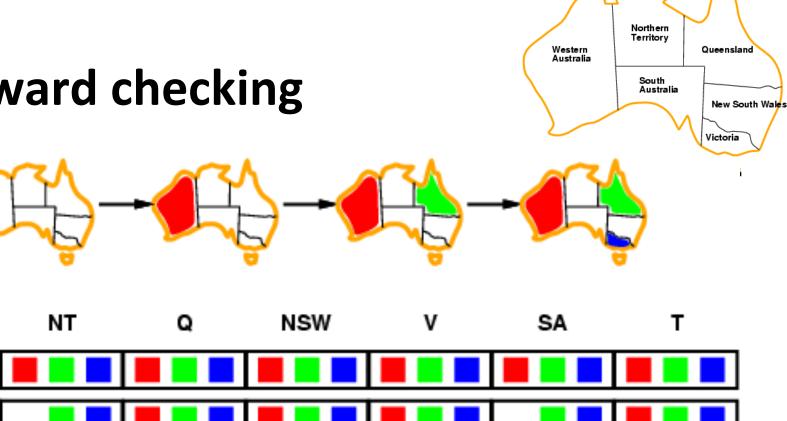
> South Australia

Queensland

New South Wales

Western Australia





Constraint propagation

• Forward checking propagates info.

from assigned to unassigned variables, but
doesn't provide early detection for all failures

Northern Territory

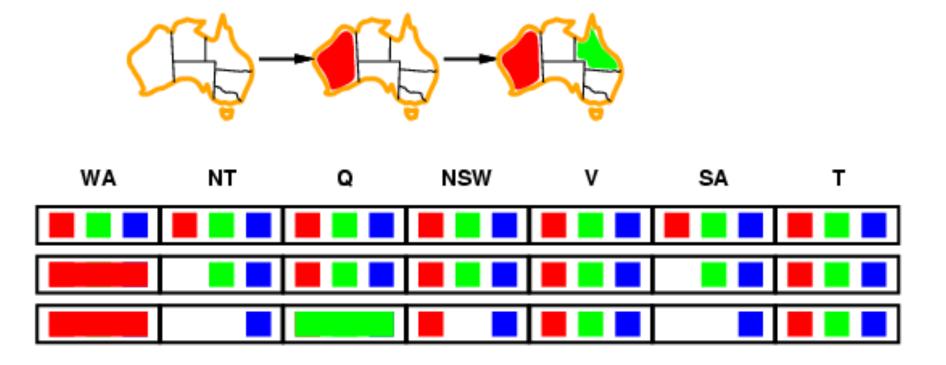
> South Australia

Queensland

Western

Australia

NT and SA cannot both be blue!



Definition: Arc consistency

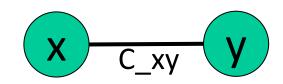
- A constraint C_xy is arc consistent wrt x if for each value v of x there is an allowed value of y
- Similarly define C_xy as arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C_xy is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g., by using AC3
 - Also called "enforcing arc consistency"

Arc Consistency Example 1

• Domains

$$-D_x = \{1, 2, 3\}$$

-D y = \{3, 4, 5, 6\}



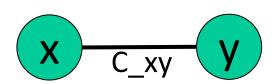
- Constraint
 - Note: for finite domains, we can represent a constraint as an enumeration of legal values
 - $-C_xy = \{(1,3), (1,5), (3,3), (3,6)\}$
- C_xy isn't arc consistent wrt x or y. By enforcing arc consistency, we get reduced domains
 - $-D'_x = \{1, 3\}$
 - $-D'_y={3, 5, 6}$

Arc Consistency Example 2

Domains

$$-D_x = \{1, 2, 3\}$$

$$-D_y = \{1, 2, 3\}$$



Constraint

$$-C_xy = lambda v1, v2: v1 < v2$$

 C_xy is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains

$$-D'_x = \{1, 2\}$$

$$-D'_y=\{2, 3\}$$

 Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

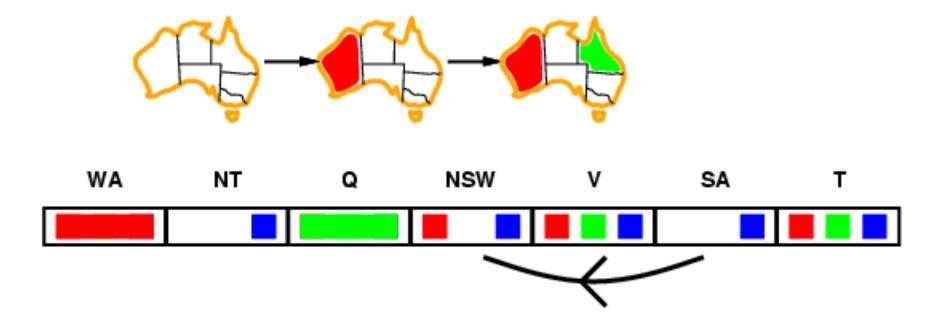
Victoria

New South Wales

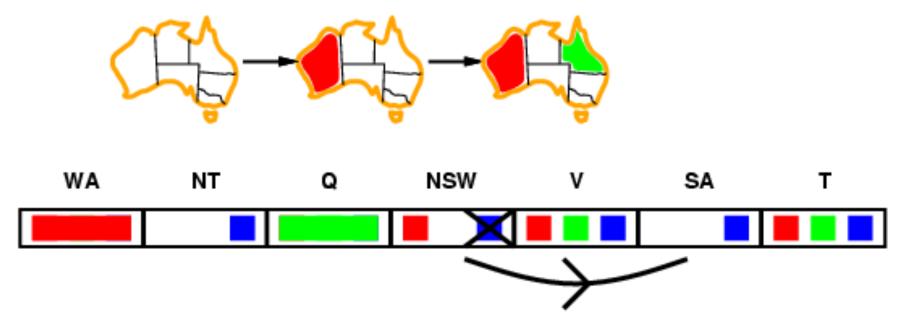
Western

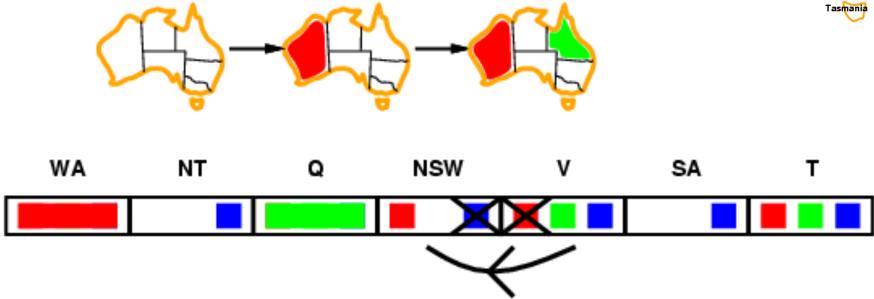
Australia

 X → Y is consistent iff for every value x of X there is some allowed y



- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff for every value x of X there is some allowed y





If X loses a value, neighbors of X need to be rechecked

Northern Territory

> South Australia

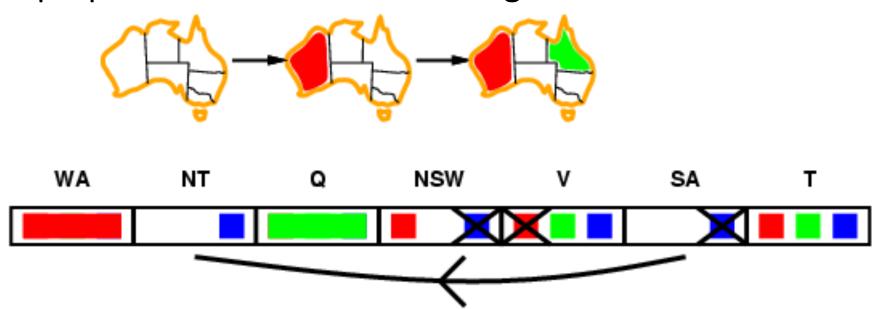
Queensland

Victoria

New South Wales

Western Australia

- Arc consistency detects failure earlier than simple forward checking
- WA=red and Q=green is quickly recognized as a deadend, i.e. an impossible partial instantiation
- The arc consistency algorithm can be run as a preprocessor or after each assignment



General CP for Binary Constraints

```
Algorithm AC3
contradiction ← false
Q 

stack of all variables
while Q is not empty and not contradiction do
  X \leftarrow UNSTACK(Q)
  For every variable Y adjacent to X do
    If REMOVE-ARC-INCONSISTENCIES(X,Y)
       If domain(Y) is non-empty then STACK(Y,Q)
       else return false
```

Complexity of AC3

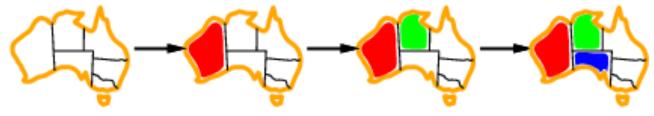
- e = number of constraints (edges)
- d = number of values per variable
- Each variable is inserted in queue up to d times
- REMOVE-ARC-INCONSISTENCY takes O(d²) time
- CP takes O(ed³) time

Improving backtracking efficiency

- Some standard techniques to improve the efficiency of backtracking
 - Can we detect inevitable failure early?
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000-queen puzzles feasible

Most constrained variable

Most constrained variable:
 choose the variable with the fewest legal values



- a.k.a. minimum remaining values (MRV) heuristic
- After assigning a value to WA, both NT and SA have only two values in their domains – choose one of them rather than Q, NSW, V or T

Most constraining variable

- Western Australia

 South Australia

 New South Wales

 Victoria
- Tie-breaker among most constrained variables
- Choose variable involved in largest # of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW

Least constraining value

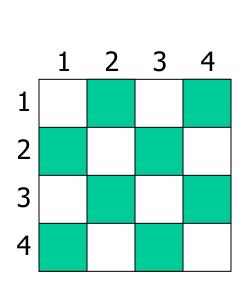
- Given a variable, choose least constraining value:
 - the one that rules out the fewest values in the remaining variables

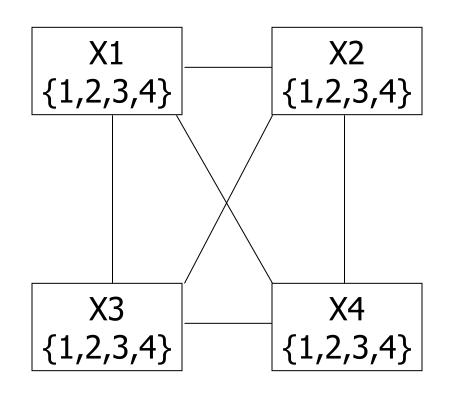


- Combining these heuristics makes 1000 queens feasible
- What's an intuitive explanation for this?

Is AC3 Alone Sufficient?

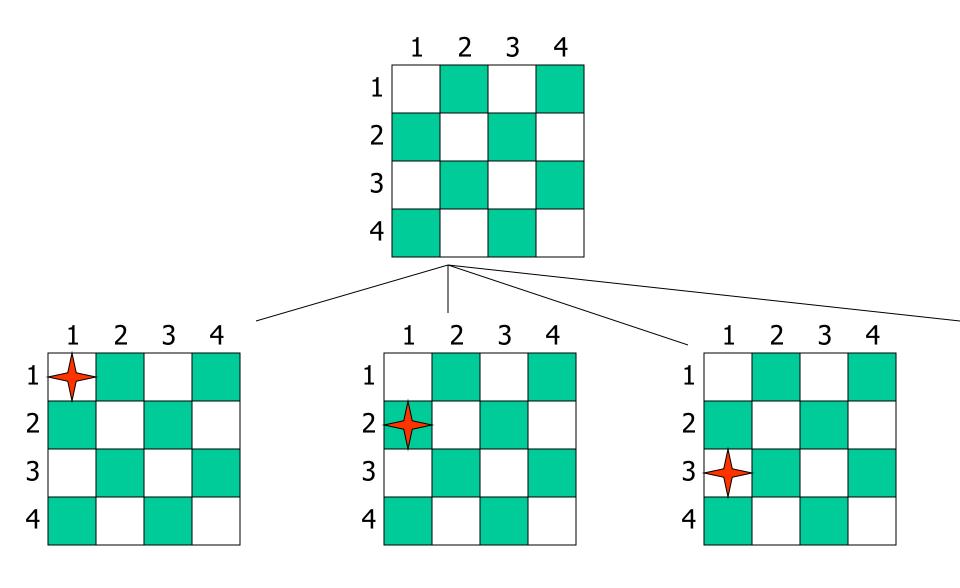
Consider the four queens problem

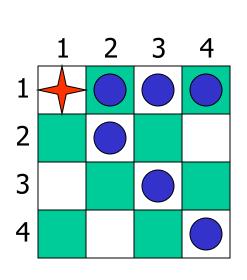


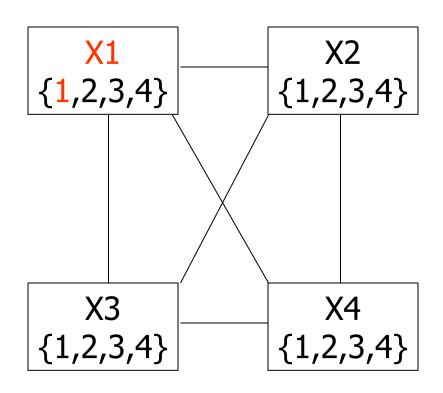


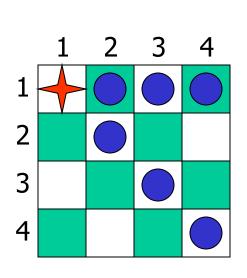
Solving a CSP still requires search

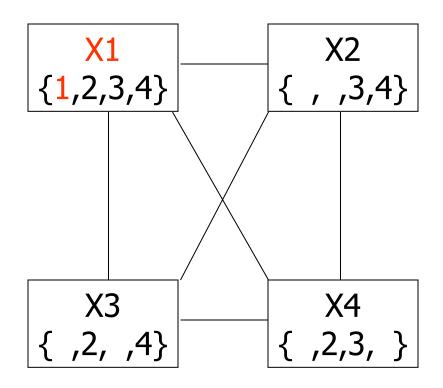
- Search:
 - -can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
 - can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation & search:
 - –perform constraint propagation at each search step

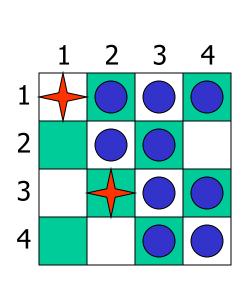


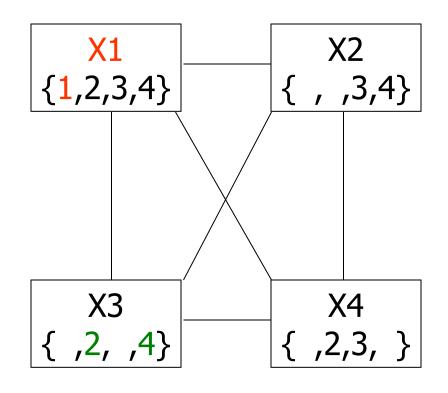




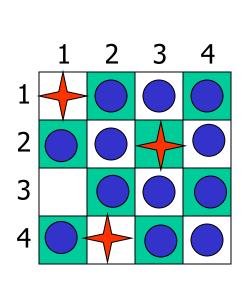


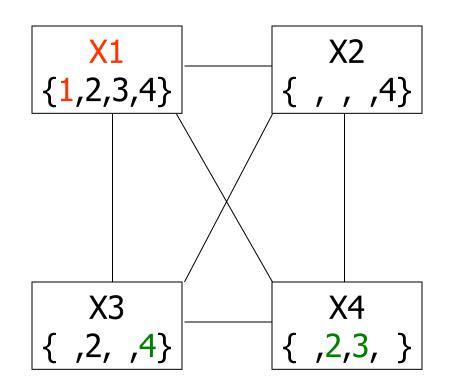




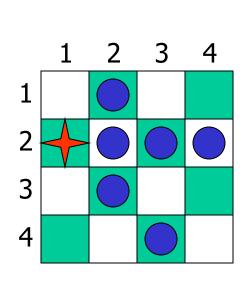


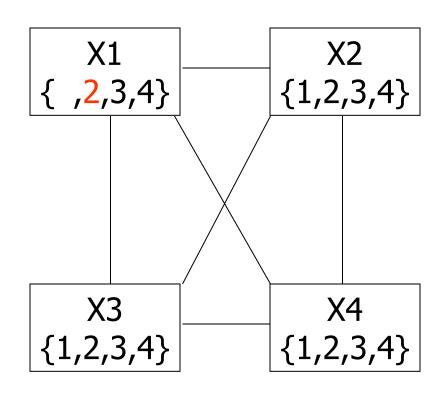
X2=3 eliminates { X3=2, X3=3, X3=4 } ⇒ inconsistent!



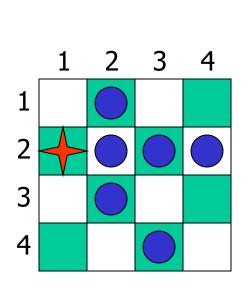


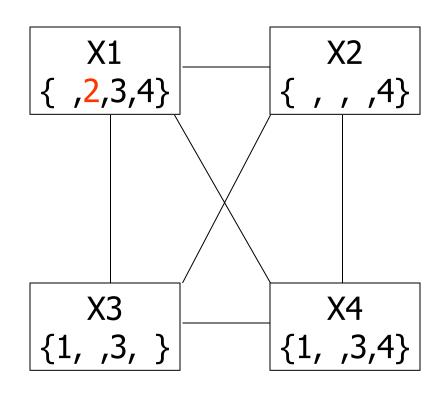
X2=4 ⇒ X3=2, which eliminates { X4=2, X4=3} ⇒ inconsistent!



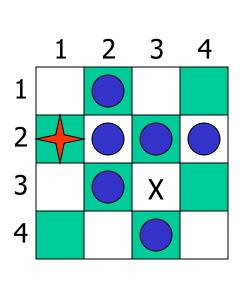


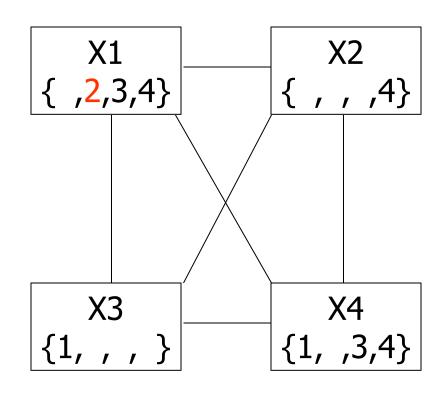
X1 can't be 1, let's try 2

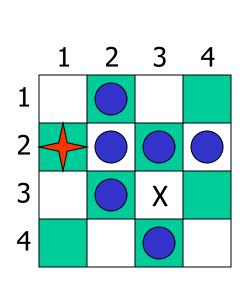


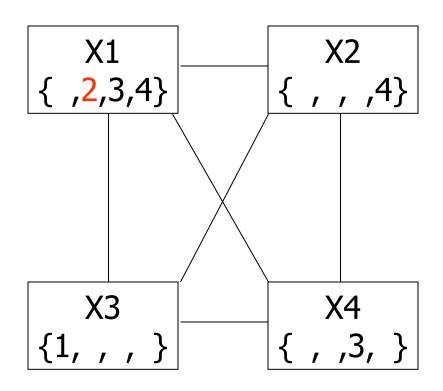


Can we eliminate any other values?

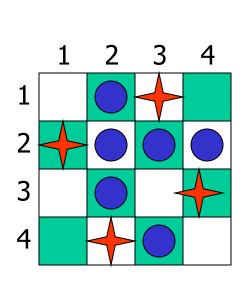


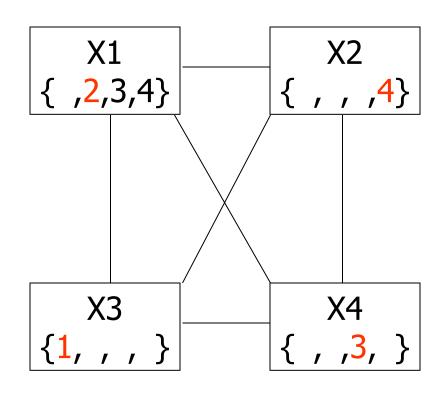






Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values





There is only one solution with X1=2

Sudoku Example

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
1			5		1		3		

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
		5							
D	5	4	8	1	3	2	9	7	6
Ε	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
ı	6	9	5	4	1	7	3	8	2

How can we set this up as a CSP?

Sudoku

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3 × 3 sub-grids must contain all nine digits

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
П			5		1		3		

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
1	6	9	5	4	1	7	3	8	2

 Some initial configurations are easy to solve and some very difficult

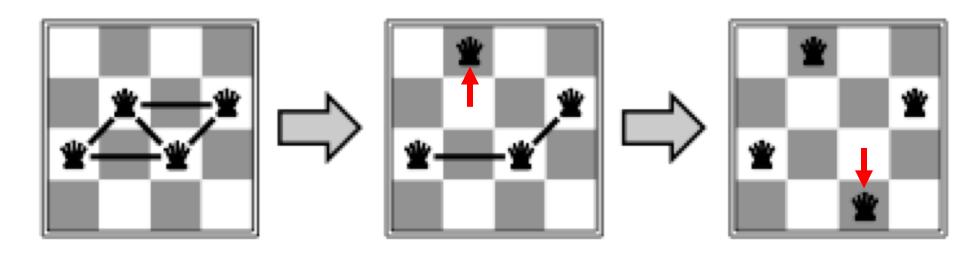
```
def sudoku(initValue):
                                                                                              # Sample problems
  p = Problem()
                                                                                              easv = [
 # Define a variable for each cell: 11,12,13...21,22,23...98,99
                                                                                               [0,9,0,7,0,0,8,6,0],
 for i in range(1, 10):
                                                                                               [0,3,1,0,0,5,0,2,0],
    p.addVariables(range(i*10+1, i*10+10), range(1, 10))
                                                                                               [8,0,6,0,0,0,0,0,0]
  # Each row has different values
                                                                                               [0,0,7,0,5,0,0,0,6],
 for i in range(1, 10):
                                                                                               [0,0,0,3,0,7,0,0,0]
    p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
                                                                                               [5,0,0,0,1,0,7,0,0],
  # Each column has different values
                                                                                               [0,0,0,0,0,0,1,0,9],
                                                                                               [0,2,0,6,0,0,0,5,0],
 for i in range(1, 10):
                                                                                               [0,5,4,0,0,8,0,7,0]]
    p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
  # Each 3x3 box has different values
                                                                                              hard = [
  p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
                                                                                               [0,0,3,0,0,0,4,0,0],
  p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
                                                                                               [0,0,0,0,7,0,0,0,0]
                                                                                               [5,0,0,4,0,6,0,0,2],
  p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
                                                                                               [0,0,4,0,0,0,8,0,0]
  p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
                                                                                               [0,9,0,0,3,0,0,2,0],
                                                                                               [0,0,7,0,0,0,5,0,0],
  p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
                                                                                               [6,0,0,5,0,2,0,0,1],
  p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
                                                                                               [0,0,0,0,9,0,0,0,0]
  p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
                                                                                               [0.0.9.0.0.0.3.0.0]]
  p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
                                                                                              very hard = [
  p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
                                                                                               [0,0,0,0,0,0,0,0,0]
                                                                                               [0,0,9,0,6,0,3,0,0],
  # add unary constraints for cells with initial non-zero values
                                                                                               [0,7,0,3,0,4,0,9,0],
  for i in range(1, 10):
                                                                                               [0,0,7,2,0,8,6,0,0],
    for j in range(1, 10):
                                                                                               [0,4,0,0,0,0,0,7,0],
      value = initValue[i-1][j-1]
                                                                                               [0,0,2,1,0,6,5,0,0],
      if value:
                                                                                               [0,1,0,9,0,5,0,4,0],
         p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
                                                                                               [0,0,8,0,2,0,7,0,0],
                                                                                               [0,0,0,0,0,0,0,0,0]
  return p.getSolution()
```

Local search for constraint problems

- Remember local search?
- There's a version of local search for CSP problems
- Basic idea:
 - -generate a random "solution"
 - -Use metric of "number of conflicts"
 - Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search

Min Conflict Example

- ·States: 4 Queens, 1 per column
- ·Operators: Move a queen in its column
- ·Goal test: No attacks
- ·Evaluation metric: Total number of attacks



How many conflicts does each state have?

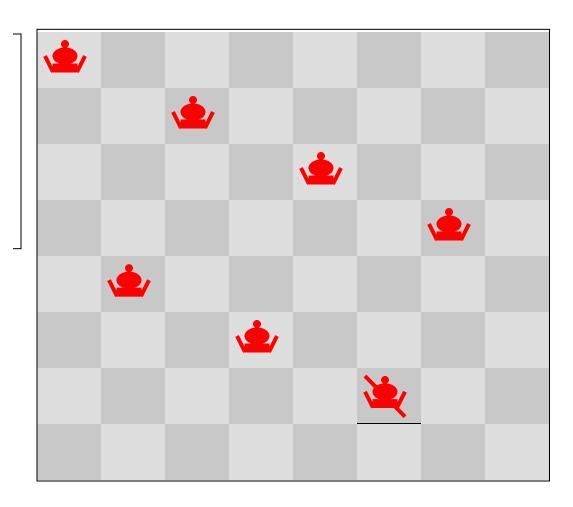
Basic Local Search Algorithm

Assign a domain value d_i to each variable v_i while no solution & not stuck & not timed out:

```
bestCost \leftarrow \infty; bestList \leftarrow \emptyset;
for each variable v<sub>i</sub> | Cost(Value(v<sub>i</sub>) > 0
    for each domain value d<sub>i</sub> of v<sub>i</sub>
         if Cost(d<sub>i</sub>) < bestCost
               bestCost \leftarrow Cost(d<sub>i</sub>); bestList \leftarrow d<sub>i</sub>;
         else if Cost(d<sub>i</sub>) = bestCost
               bestList \leftarrow bestList \cup d<sub>i</sub>
Take a randomly selected move from bestList
```

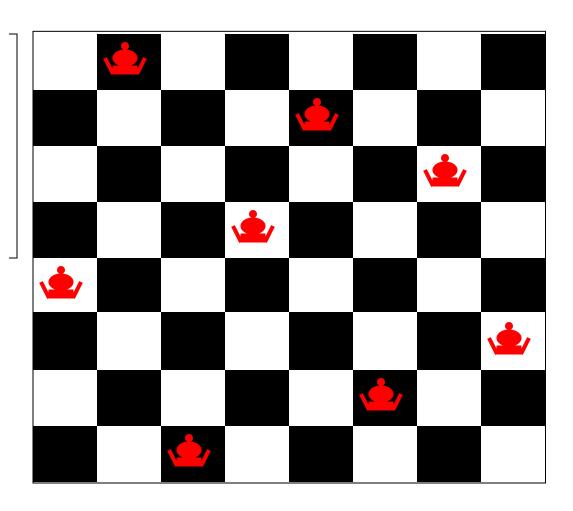
Eight Queens using Backtracking

Undo move for Queen 7 and so on...

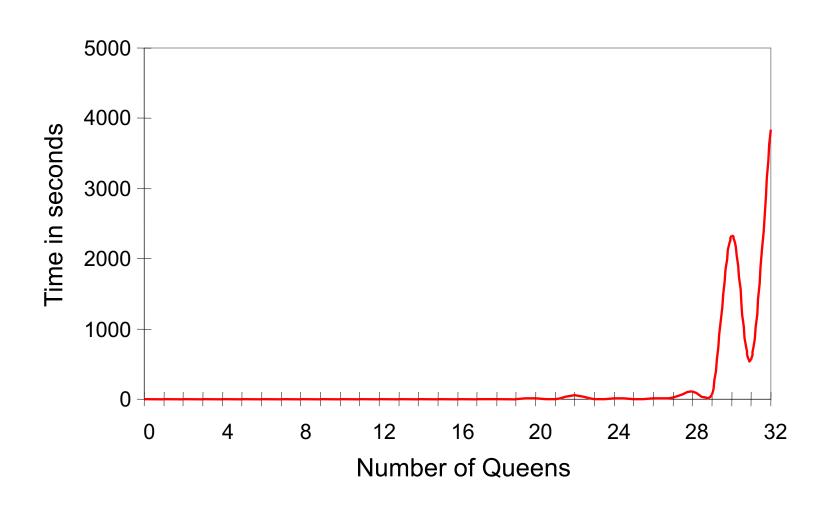


Eight Queens using Local Search

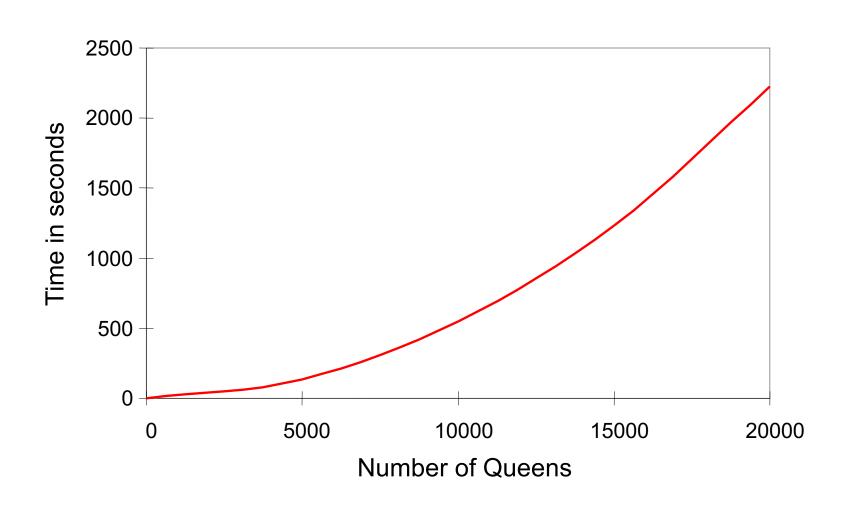
Answer Found



Backtracking Performance



Local Search Performance

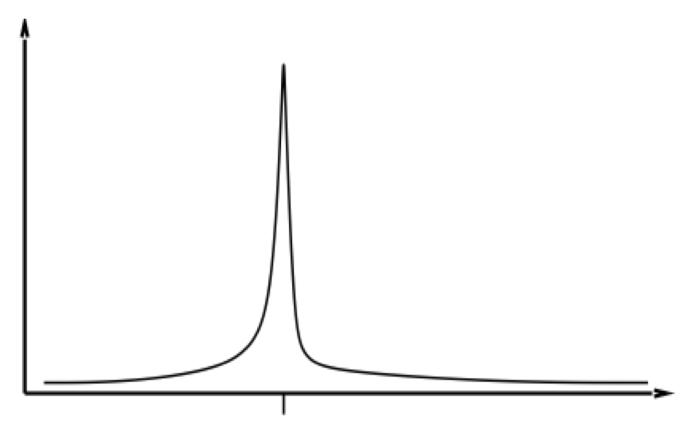


Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- For example, can solve arbitrary size (i.e., millions) N-Queens problems in constant time
- Appears to hold for arbitrary CSPs with the caveat...

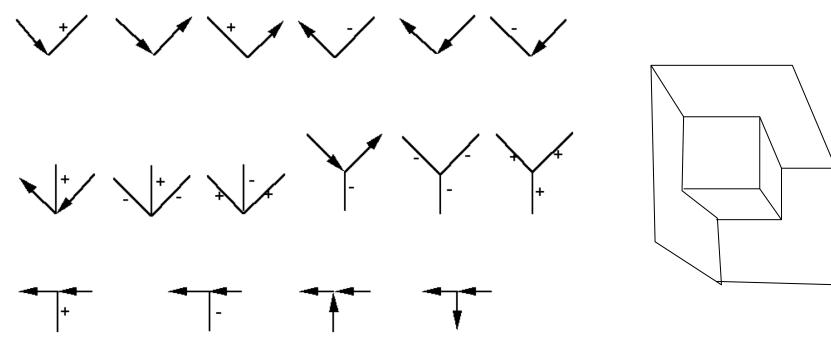
Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.



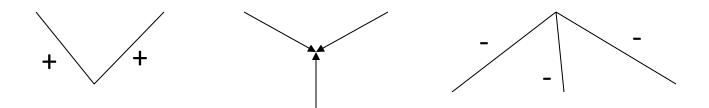
Famous example: labeling line drawings

- Waltz labeling algorithm, earliest AI CSP application (1972)
 - Convex interior lines are labeled as +
 - Concave interior lines are labeled as –
 - Boundary lines are labeled as
- There are 208 labeling (most of which are impossible)
- Here are the 18 legal labeling:



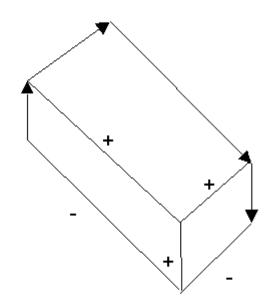
Labeling line drawings II

• Here are some illegal labelings:

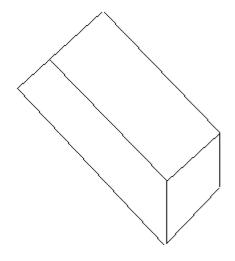


Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

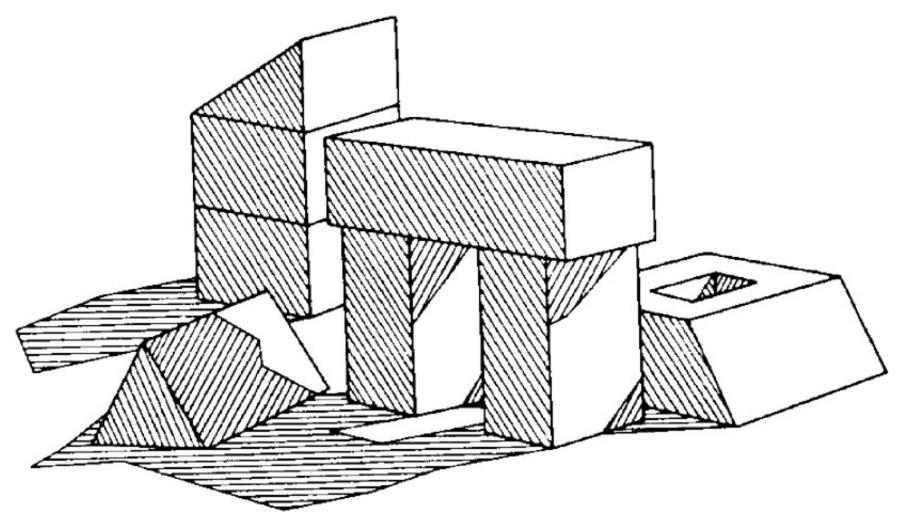


A solution for one labeling problem



A labeling problem with no solution

Shadows add complexity



CSP was able to label scenes where some of the lines were caused by shadows

Intelligent backtracking

- Backjumping: if V_j fails, jump back to the variable V_i with greatest i such that the constraint (V_i, V_j) fails (i.e., most recently instantiated variable in conflict with V_i)
- Backchecking: keep track of incompatible value assignments computed during backjumping
- Backmarking: keep track of which variables led to the incompatible variable assignments for improved backchecking

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints vs. preferences
 - Degree of constraint satisfaction
 - Cost of violating constraints
- What if constraints are of different forms?
 - Symbolic constraints
 - Numerical constraints [constraint solving]
 - -Temporal constraints
 - Mixed constraints

Challenges for constraint reasoning

- What if constraints are represented intentionally?
 - Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
 - Dynamic constraint networks
 - -Temporal constraint networks
 - Constraint repair
- What if multiple agents or systems are involved in constraint satisfaction?
 - Distributed CSPs
 - Localization techniques