Overview

• Constraint satisfaction is a powerful problem-solving paradigm
 – Problem: set of variables to which we must assign values satisfying problem-specific constraints
 – Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming…

• Algorithms for CSPs
 – Backtracking (systematic search)
 – Constraint propagation (k-consistency)
 – Variable and value ordering heuristics
 – Backjumping and dependency-directed backtracking
Motivating example: 8 Queens

Place 8 queens on a chess board such that none is attacking another.

\[8^8 \text{ is } 16,777,216 \]
Motivating example: 8-Queens

After placing these two queens, it’s trivial to make the squares we can no longer use.
What more do we need for 8 queens?

- Not just a *successor function* and *goal test*
- But also
 - a means to *propagate constraints* imposed by one queen on the others
 - an *early failure test*

→ Explicit representation of constraints and constraint manipulation algorithms
Informal definition of CSP

• CSP (Constraint Satisfaction Problem), given
 (1) finite set of variables
 (2) each with domain of possible values (often finite)
 (3) set of constraints limiting values variables can assume

• Solution is an assignment of a value to each variable such that all constraints are satisfied

• Tasks: decide if a solution exists, find a solution, find all solutions, find “best solution” according to some metric (objective function)
Example: 8-Queens Problem

• Eight variables X_i, $i = 1..8$ where X_i is the row number of queen in column i

• Domain for each variable $\{1,2,\ldots,8\}$

• Constraints are of the forms:
 - No queens on same row
 $$X_i = k \implies X_j \neq k \text{ for } j = 1..8, j \neq i$$
 - No queens on same diagonal
 $$X_i = k_i, X_j = k_j \implies |i-j| \neq |k_i - k_j| \text{ for } j = 1..8, j \neq i$$
Example: Task Scheduling

Examples of scheduling constraints:
• T1 must be done during T3
• T2 must be achieved before T1 starts
• T2 must overlap with T3
• T4 must start after T1 is complete
Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color.
Map coloring

• Variables: A, B, C, D, E all of domain RGB
• Domains: RGB = \{red, green, blue\}
• Constraints: A \neq B, A \neq C, A \neq E, A \neq D, B \neq C, C \neq D, D \neq E
• A solution: A=red, B=green, C=blue, D=green, E=blue

\[\begin{array}{|c|c|c|}
\hline
E & D & A \\
\hline
\hline
C & B \\
\hline
\end{array}\] =>

\[\begin{array}{|c|c|c|}
\hline
E & D & A \\
\hline
C & B \\
\hline
\end{array}\]
Brute Force methods

• Finding a solution by a brute force search is easy
 – Generate and test is a weak method
 – Just generate potential combinations and test each

• Potentially very inefficient
 – With \(n \) variables where each can have one of 3 values, there are \(3^n \) possible solutions to check

• There are \(~190\) countries in the world, which we can color using four colors

• \(4^{190} \) is a big number!

solve(A,B,C,D,E) :-
color(A),
color(B),
color(C),
color(D),
color(E),
not(A=B),
not(A=B),
not(B=C),
not(A=C),
not(C=D),
not(A=E),
not(C=D).
color(red).
color(green).
color(blue).
Example: SATisfiability

• Given a set of logic propositions containing variables, find an assignment of the variables to \{false, true\} that satisfies them.

• For example, the clauses:

 \(-(A \lor B \lor \neg C) \land (\neg A \lor D)\)
 \-\hspace{1cm}(\text{equivalent to } (C \rightarrow A) \lor (B \land D \rightarrow A)\)

 are satisfied by

 \hspace{2cm}A = false, B = true, C = false, D = false.

• Satisfiability is known to be NP-complete, so in worst case, solving CSP problems requires exponential time.
Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design
Definition of a constraint network (CN)

A constraint network (CN) consists of

- **Set of variables** $X = \{x_1, x_2, \ldots, x_n\}$
 - with associate domains $\{d_1, d_2, \ldots, d_n\}$
 - domains are typically finite

- **Set of constraints** $\{c_1, c_2, \ldots, c_m\}$ where
 - each defines a predicate that is a relation over
 a particular subset of variables (X)
 - e.g., C_i involves variables $\{X_{i1}, X_{i2}, \ldots, X_{ik}\}$
 and defines the relation $R_i \subseteq D_{i1} \times D_{i2} \times \ldots \times D_{ik}$
Running example: coloring Australia

- Seven variables: \{WA, NT, SA, Q, NSW, V, T\}
- Each variable has same domain: \{red, green, blue\}
- No two adjacent variables have same value: WA \ne NT, WA \ne SA, NT \ne SA, NT \ne Q, SA \ne Q, SA \ne NSW, SA \ne V, Q \ne NSW, NSW \ne V
Unary & binary constraints most common

Binary constraints

- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints
 - Reification
Formal definition of a CN

• Instantiations
 – An *instantiation* of a subset of variables S is an assignment of a value in its domain to each variable in S
 – An instantiation is *legal* iff it does not violate any constraints

• A *solution* is an instantiation of all of the variables in the network
Typical tasks for CSP

• Solution related tasks:
 – Does a solution exist?
 – Find one solution
 – Find all solutions
 – Given a metric on solutions, find the best one
 – Given a partial instantiation, do any of the above

• Transform the CN into an equivalent CN that is easier to solve
Binary CSP

• A **binary CSP** is a CSP where all constraints are binary or unary

• Any non-binary CSP can be converted into a binary CSP by introducing additional variables

• A binary CSP can be represented as a **constraint graph**, with a node for each variable and an arc between two nodes iff there’s a constraint involving the two variables
 – Unary constraints appear as self-referential arcs
Running example: coloring Australia

- Seven variables: \{WA, NT, SA, Q, NSW, V, T\}
- Each variable has the same domain: \{red, green, blue\}
- No two adjacent variables have the same value:
 \[WA \neq NT, \ WA \neq SA, \ NT \neq SA, \ NT \neq Q, \ SA \neq Q, \ SA \neq NSW, \ SA \neq V, \ Q \neq NSW, \ NSW \neq V \]
A running example: coloring Australia

- Solutions are complete and consistent assignments
- One of several solutions
- Note that for generality, constraints can be expressed as relations, e.g., \(\text{WA} \neq \text{NT} \) is
 \[(\text{WA},\text{NT}) \in \{(\text{red},\text{green}), (\text{red},\text{blue}), (\text{green},\text{red}), (\text{green},\text{blue}), (\text{blue},\text{red}), (\text{blue},\text{green})\}\]
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

– If a is complete then return a
– X \leftarrow select an unassigned variable
– D \leftarrow select an ordering for the domain of X
– For each value v in D do
 – If v is consistent with a then
 – Add (X= v) to a
 – result \leftarrow CSP-BACKTRACKING(a)
 – If result $\not\equiv$ failure then return result
 – Remove (X= v) from a
 – Return failure

Start with CSP-BACKTRACKING(\{\})

Note: this is depth first search; can solve n-queens problems for n \sim 25
Problems with backtracking

• Thrashing: keep repeating the same failed variable assignments

• Things that can help avoid this:
 – Consistency checking
 – Intelligent backtracking schemes

• Inefficiency: can explore areas of the search space that aren’t likely to succeed
 – Variable ordering can help
Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking

– Can we detect inevitable failure early?
– Which variable should be assigned next?
– In what order should its values be tried?
After variable X is assigned value v, examine each unassigned variable Y connected to X by a constraint and delete from Y’s domain values inconsistent with v.

Using forward checking and backward checking roughly doubles the size of N-queens problems that can be practically solved.
Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values
Forward checking
Forward checking
Forward checking
Constraint propagation

• Forward checking propagates info. from assigned to unassigned variables, but doesn't provide early detection for all failures

• NT and SA cannot both be blue!
Definition: Arc consistency

- A constraint C_{xy} is *arc consistent* wrt x if for each value v of x there is an allowed value of y
- Similarly define C_{xy} as arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C_{xy} is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g., by using AC3
 - Also called “enforcing arc consistency”
Arc Consistency Example 1

- **Domains**
 - $D_x = \{1, 2, 3\}$
 - $D_y = \{3, 4, 5, 6\}$

- **Constraint**
 - Note: for finite domains, we can represent a constraint as an enumeration of legal values
 - $C_{xy} = \{(1, 3), (1, 5), (3, 3), (3, 6)\}$

- C_{xy} is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains
 - $D'_x = \{1, 3\}$
 - $D'_y = \{3, 5, 6\}$
Arc Consistency Example 2

- **Domains**
 - $D_x = \{1, 2, 3\}$
 - $D_y = \{1, 2, 3\}$

- **Constraint**
 - $C_{xy} = \lambda v1,v2: v1 < v2$

- C_{xy} is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains
 - $D'_x = \{1, 2\}$
 - $D'_y = \{2, 3\}$
Arc consistency

- Simplest form of propagation makes each arc consistent

- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

• Simplest form of propagation makes each arc consistent

• $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

If X loses a value, neighbors of X need to be rechecked
Arc consistency

- Arc consistency detects failure earlier than simple forward checking
- Can be run as a preprocessor or after each assignment
General CP for Binary Constraints

Algorithm **AC3**

contradiction \(\leftarrow false \)

Q \(\leftarrow \) stack of all variables

while Q is not empty and not contradiction do

X \(\leftarrow \) UNSTACK(Q)

For every variable Y adjacent to X do

If REMOVE-ARC-INCONSISTENCIES(X,Y) then

If domain(Y) is non-empty then STACK(Y,Q)

else return false
Complexity of AC3

- \(e = \) number of constraints (edges)
- \(d = \) number of values per variable
- Each variable is inserted in \(Q \) up to \(d \) times
- \text{REMOVE-ARC-INCONSISTENCY} takes \(O(d^2) \) time
- \text{CP} takes \(O(ed^3) \) time
Improving backtracking efficiency

• Some standard techniques to improve the efficiency of backtracking
 – Can we detect inevitable failure early?
 – Which variable should be assigned next?
 – In what order should its values be tried?

• Combining constraint propagation with these heuristics makes 1000 N-queen puzzles feasible
Most constrained variable

• Most constrained variable: choose the variable with the fewest legal values

• a.k.a. **minimum remaining values (MRV)** heuristic

• After assigning a value to WA, NT and SA have only two values in their domains – choose one of them rather than Q, NSW, V or T
Most constraining variable

- Tie-breaker among most constrained variables
- Choose variable involved in largest number of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW
Least constraining value

- Given a variable, choose least constraining value:
 - the one that rules out the fewest values in the remaining variables

- Combining these heuristics makes 1000 queens feasible

- What’s an intuitive explanation for this?
Is AC3 Alone Sufficient?

Consider the four queens problem

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{cc}
X1 & X2 \\
\{1,2,3,4\} & \{1,2,3,4\} \\
\end{array}
\]

\[
\begin{array}{cc}
X3 & X4 \\
\{1,2,3,4\} & \{1,2,3,4\} \\
\end{array}
\]
Solving a CSP still requires search

• Search:
 – can find good solutions, but must examine non-solutions along the way

• Constraint Propagation:
 – can rule out non-solutions, but this is not the same as finding solutions

• Interweave constraint propagation & search:
 – Perform constraint propagation at each search step
4-Queens Problem
4-Queens Problem

X1
\{1,2,3,4\}

X2
\{ , ,3,4\}

X3
\{ ,2, ,4\}

X4
\{ ,2,3, , \}
X2=3 eliminates { X3=2, X3=3, X3=4 }
⇒ inconsistent!
4-Queens Problem

\[X_2=4 \Rightarrow X_3=2, \text{ which eliminates } \{ X_4=2, X_4=3 \} \]
\[\Rightarrow \text{ inconsistent!} \]
X1 can’t be 1, let’s try 2
4-Queens Problem

Can we eliminate any other values?
4-Queens Problem
Arc constancy eliminates x3=3 because it’s not consistent with X2’s remaining values.
4-Queens Problem

There is only one solution with $X1 = 2$
How can we set this up as a CSP?
Sudoku

• Digit placement puzzle on 9x9 grid with unique answer
• Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
• Each column, row, and nine 3×3 sub-grids must contain all nine digits

• Some initial configurations are easy to solve and some very difficult
def sudoku(initValue):
 p = Problem()
 # Define a variable for each cell: 11,12,13...21,22,23...98,99
 for i in range(1, 10):
 p.addVariables(range(i*10+1, i*10+10), range(1, 10))
 # Each row has different values
 for i in range(1, 10):
 p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
 # Each column has different values
 for i in range(1, 10):
 p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
 # Each 3x3 box has different values
 p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])

 # add unary constraints for cells with initial non-zero values
 for i in range(1, 10):
 for j in range(1, 10):
 value = initValue[i-1][j-1]
 if value:
 p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
 return p.getSolution()

Sample problems
easy = [
 [0,9,0,7,0,0,8,6,0],
 [0,3,1,0,0,5,0,2,0],
 [8,0,6,0,0,0,0,0,0],
 [0,0,7,0,5,0,0,0,6],
 [0,0,3,0,7,0,0,0,0],
 [5,0,0,0,1,0,7,0,0],
 [0,0,0,0,0,1,0,9,0],
 [0,2,0,6,0,0,0,5,0],
 [0,5,4,0,0,8,0,7,0]]

hard = [
 [0,0,3,0,0,0,4,0,0],
 [0,0,0,7,0,0,0,0,0],
 [5,0,0,4,6,0,0,2,0],
 [0,0,4,0,0,0,8,0,0],
 [0,9,0,0,3,0,0,2,0],
 [0,7,0,0,0,5,0,0,0],
 [6,0,0,5,0,2,0,0,1],
 [0,0,0,9,0,0,0,0,0],
 [0,9,0,0,0,3,0,0]]

very_hard = [
 [0,0,0,0,0,0,0,0,0],
 [0,0,9,0,6,0,3,0,0],
 [0,7,0,3,0,4,0,9,0],
 [0,0,7,2,0,8,6,0,0],
 [0,4,0,0,0,0,7,0,0],
 [0,0,2,1,0,6,5,0,0],
 [0,1,0,9,0,5,0,4,0],
 [0,0,8,0,2,0,7,0,0],
 [0,0,0,0,0,0,0,0,0]]
Local search for constraint problems

• Remember local search?
• There’s a version of local search for CSP problems
• Basic idea:
 – generate a random “solution”
 – Use metric of “number of conflicts”
 – Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
• Has all features and problems of local search
Min Conflict Example

• **States**: 4 Queens, 1 per column
• **Operators**: Move queen in its column
• **Goal test**: No attacks
• **Evaluation metric**: Total number of attacks

How many conflicts does each state have?
Basic Local Search Algorithm

Assign a domain value d_i to each variable v_i
while no solution & not stuck & not timed out:

- $\text{bestCost} \leftarrow \infty$; $\text{bestList} \leftarrow \emptyset$
- for each variable v_i | $\text{Cost}(\text{Value}(v_i)) > 0$
 - for each domain value d_i of v_i
 - if $\text{Cost}(d_i) < \text{bestCost}$
 - $\text{bestCost} \leftarrow \text{Cost}(d_i)$; $\text{bestList} \leftarrow d_i$
 - else if $\text{Cost}(d_i) = \text{bestCost}$
 - $\text{bestList} \leftarrow \text{bestList} \cup d_i$

Take a randomly selected move from bestList
Eight Queens using Backtracking

Undo move for Queen 7 and so on...
Eight Queens using Local Search

Answer Found
Backtracking Performance

Time in seconds vs Number of Queens
Local Search Performance

![Graph showing the relationship between Time in seconds and Number of Queens. The time increases exponentially as the number of queens increases.]
Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution.
- Min Conflict often has astounding performance.
- For example, it’s been shown to solve arbitrary size (in the millions) N-Queens problems in constant time.
- This appears to hold for arbitrary CSPs with the caveat...
Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.
Famous example: labeling line drawings

- **Waltz** labeling algorithm, earliest AI CSP application (1972)
 - Convex interior lines are labeled as +
 - Concave interior lines are labeled as –
 - Boundary lines are labeled as
- There are 208 labeling (most of which are impossible)
- Here are the 18 legal labeling:
Labeling line drawings II

• Here are some illegal labelings:
Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

A solution for one labeling problem

A labeling problem with no solution
Shadows add complexity

CSP was able to label scenes where some of the lines were caused by shadows.
K-consistency

- K-consistency generalizes arc consistency to sets of more than two variables.
 - A graph is K-consistent if, for legal values of any K-1 variables in the graph, and for any Kth variable V_k, there is a legal value for V_k

- Strong K-consistency = J-consistency for all $J \leq K$
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency = strong 3-consistency
Why do we care?

1. If we have a CSP with N variables that is known to be strongly N-consistent, we can solve it without backtracking.

2. For any CSP that is strongly K-consistent, if we find an appropriate variable ordering (one with “small enough” branching factor), we can solve the CSP without backtracking.
Intelligent backtracking

- **Backjumping**: if V_j fails, jump back to the variable V_i with greatest i such that the constraint (V_i, V_j) fails (i.e., most recently instantiated variable in conflict with V_i)

- **Backchecking**: keep track of incompatible value assignments computed during backjumping

- **Backmarking**: keep track of which variables led to the incompatible variable assignments for improved backchecking
Challenges for constraint reasoning

• What if not all constraints can be satisfied?
 – Hard vs. soft constraints
 – Degree of constraint satisfaction
 – Cost of violating constraints

• What if constraints are of different forms?
 – Symbolic constraints
 – Numerical constraints [constraint solving]
 – Temporal constraints
 – Mixed constraints
Challenges for constraint reasoning

• What if constraints are represented intensionally?
 – Cost of evaluating constraints (time, memory, resources)

• What if constraints, variables, and/or values change over time?
 – Dynamic constraint networks
 – Temporal constraint networks
 – Constraint repair

• What if multiple agents or systems are involved in constraint satisfaction?
 – Distributed CSPs
 – Localization techniques