Basic Ray Tracing

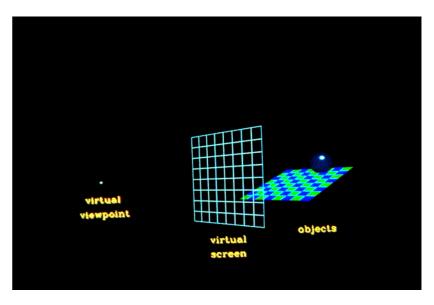
CMSC 435/634

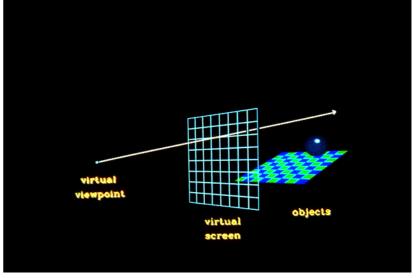
Visibility Problem

- Rendering: converting a model to an image
- Visibility: deciding which objects (or parts) will appear in the image
 - Object-order
 - OpenGL (later)
 - Image-order
 - Ray Tracing (now)

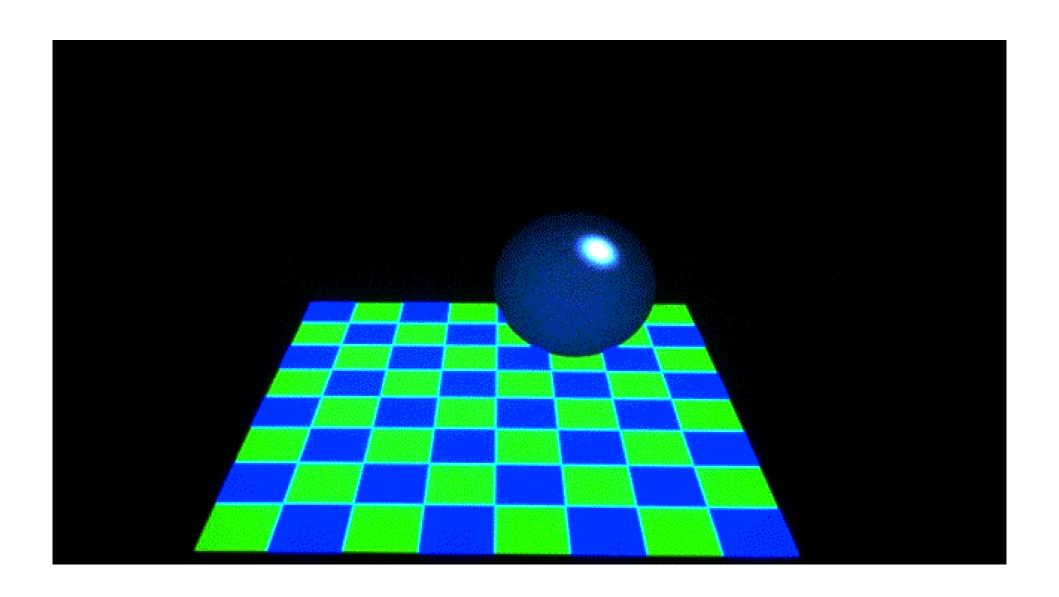
Raytracing

- Given
 - Scene
 - Viewpoint
 - Viewplane
- Cast ray from viewpoint through pixels into scene





View



Computing Viewing Rays

Parametric ray

$$\vec{p}(t) = \vec{e} + t(\vec{s} - \vec{e})$$

Camera frame

 $ec{e}$: eye point

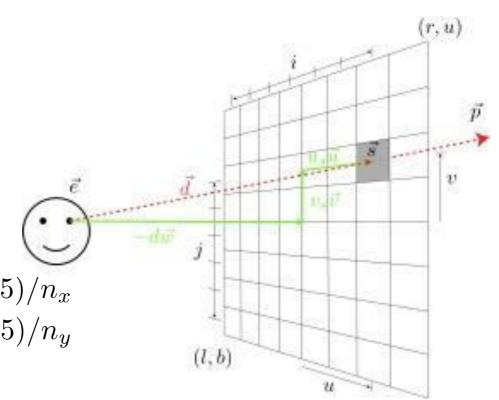
 $\vec{u}, \vec{v}, \vec{w}$: basis vectors

- right, up, backward
 - Right hand rule!
- Screen position

$$u_s = left + (right - left)(i + 0.5)/n_x$$

$$v_s = top + (bottom - top)(j + 0.5)/n_y$$

$$\vec{s} = \vec{e} + u_s \vec{u} + v_s \vec{v} - d \vec{w}$$



Calculating Intersections

Define ray parametrically:

$$\vec{p} = \vec{e} + t \ (\vec{s} - \vec{e})$$
 $x = e_z + t \ (s_x - e_x) = e_x + t \ d_x$
 $y = e_z + t \ (s_y - e_y) = e_y + t \ d_y$
 $z = e_z + t \ (s_z - e_z) = e_z + t \ d_z$

• If (e_x,e_y,e_z) is center of projection and (s_x,s_y,s_z) is center of pixel, then

 $0 \le t \le 1$: points between those locations

t < 0: points behind viewer

t > 1: points beyond view window

Ray-Sphere Intersection

Sphere in vector form

$$f(\vec{p}) = (\vec{p} - \vec{c}) \cdot (\vec{p} - \vec{c}) - r^2 = 0$$

Ray

$$\vec{p}(t) = \vec{e} + t \, \vec{d}$$

Intersection when

$$f(\vec{p}(t)) = 0$$

$$((\vec{e} + t \vec{d}) - \vec{c}) \cdot ((\vec{e} + t \vec{d}) - \vec{c}) - r^2 = 0$$

$$(t \vec{d} + \vec{ec}) \cdot (t \vec{d} + \vec{ec}) - r^2 = 0$$

$$\vec{d} \cdot \vec{d} t^2 + 2\vec{d} \cdot \vec{ec} t + (\vec{ec} \cdot \vec{ec} - r^2) = 0$$

$$t = \frac{-\vec{d} \cdot \vec{ec} \pm \sqrt{(\vec{d} \cdot \vec{ec})^2 - \vec{d} \cdot \vec{d}(\vec{ec} \cdot \vec{ec} - r^2)}}{\vec{d} \cdot \vec{d}}$$

Ray-Polygon Intersection

Given ray and plane containing polygon

$$\vec{p}(t) = \vec{e} + t \, \vec{d}$$

$$f(\vec{p}) = \vec{n} \cdot \vec{p} - \vec{n} \cdot \vec{p}_0 = 0$$

What is ray/plane intersection?

$$f(\vec{p}(t)) = \vec{n} \cdot (\vec{e} + t \, \vec{d}) - \vec{n} \cdot \vec{p}_0 = 0$$
$$t = \frac{\vec{n} \cdot \vec{p}_0 - \vec{n} \cdot \vec{e}}{\vec{n} \cdot \vec{d}}$$

Is intersection point inside polygon?

Ray-Triangle Intersection

Intersection of ray with barycentric triangle

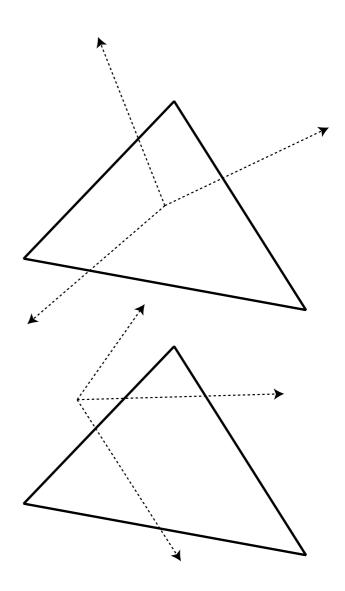
$$\vec{p} = \vec{e} + t\vec{d} = \alpha \vec{p_0} + \beta \vec{p_1} + \gamma \vec{p_2}$$
 $\alpha, \beta, \gamma > 0; \alpha + \beta + \gamma = 1$

- − In triangle if $\alpha \ge 0$, $\beta \ge 0$, $\gamma \ge 0$
- To avoid computing all three, can replace α ≥ 0 with β + γ ≤ 1

```
boolean raytri (ray r, vector p0, p1, p2, interval [t_0,t_1]) { compute t if (( t < t_0 ) or (t > t_1)) return ( false ) compute \gamma if ((\gamma < 0 ) or (\gamma > 1)) return ( false ) compute \beta if ((\beta < 0 ) or (\beta+\gamma > 1)) return ( false ) return true }
```

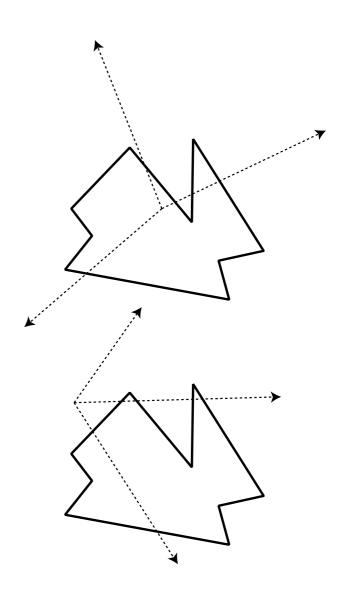
Point in Polygon?

- Is P in polygon?
- Cast ray from P to infinity
 - 1 crossing = inside
 - 0, 2 crossings = outside

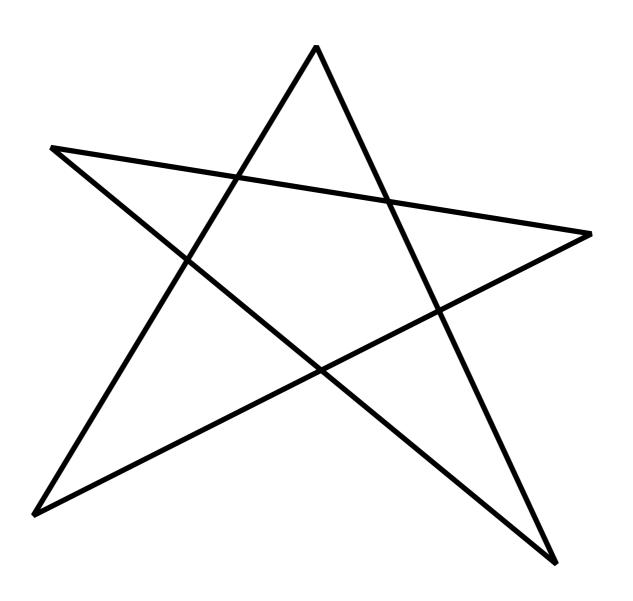


Point in Polygon?

- Is P in concave polygon?
- Cast ray from P to infinity
 - Odd crossings = inside
 - Even crossings = outside



What Happens?



Raytracing Characteristics

- Good
 - Simple to implement
 - Minimal memory required
 - Easy to extend
- Bad
 - Aliasing
 - Computationally intensive
 - Intersections expensive (75-90% of rendering time)
 - Lots of rays

Basic Illumination Concepts

Terms

- Illumination: calculating light intensity at a point (object space; equation) based loosely on physical laws
- Shading: algorithm for calculating intensities at pixels (image space; algorithm)

Objects

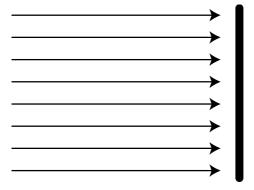
- Light sources: light-emitting
- Other objects: light-reflecting

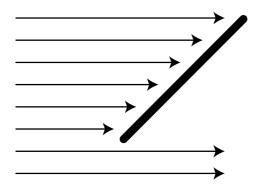
Light sources

- Point (special case: at infinity)
- Area

Lambert's Law

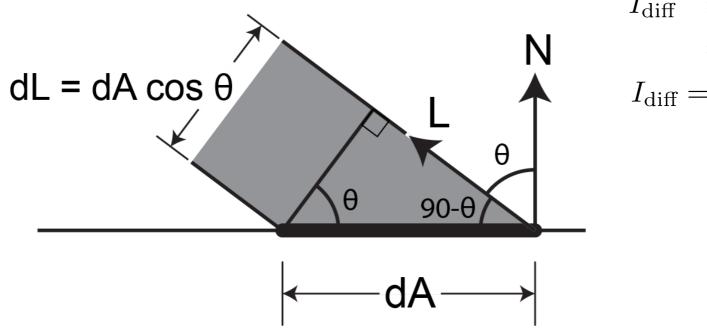
Intensity of reflected light related to orientation





Lambert's Law

• Specifically: the radiant energy from any small surface area dA in any direction θ relative to the surface normal is proportional to $\cos\theta$



$$I_{\text{diff}} = K_d I_l \cos \theta$$
$$= K_d I_l (N \cdot L)$$
$$I_{\text{diff}} = K_d I_l \max(0, N \cdot L)$$

Ambient Light

- Additional light bounces we're not counting
- Approximate them as a constant

 I_a = Amount of extra light coming into this surface

 K_a = Amount that bounces off of this surface

$$I_{\rm amb} = K_a I_a$$

Total extra light bouncing off this surface

Combined Model

$$I_{\text{total}} = I_{\text{amb}} + I_{\text{diff}}$$

= $K_a I_a + K_d I_l \max(0, N \cdot L)$

Adding color:

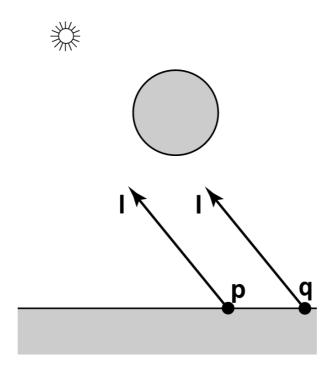
$$I_{\rm R} = K_{aR}I_{aR} + K_{dR}I_{lR} \max(0, N \cdot L)$$
 $I_{\rm G} = K_{aG}I_{aG} + K_{dG}I_{lG} \max(0, N \cdot L)$
 $I_{\rm B} = K_{aB}I_{aB} + K_{dB}I_{lB} \max(0, N \cdot L)$

For any wavelength λ :

$$I_{\lambda} = K_{a\lambda}I_{a\lambda} + K_{d\lambda}I_{l\lambda} \max(0, N \cdot L)$$

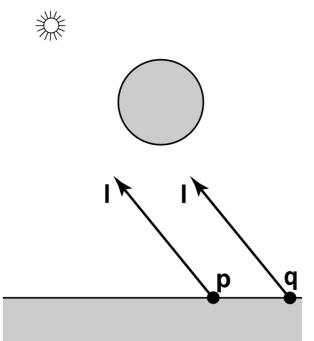
Shadows

 What if there is an object between the surface and light?

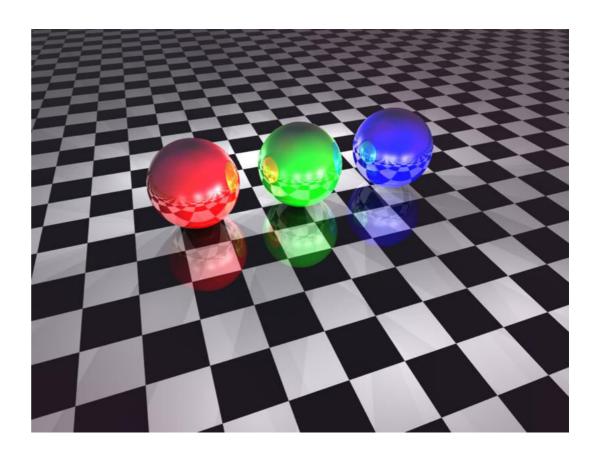


Ray Traced Shadows

- Trace a ray
 - Start = point on surface
 - End = light source
 - t=0 at Suface, t=1 at Light
 - "Bias" to avoid surface acne
- Test
 - Bias ≤ t ≤ 1 = shadow
 - -t < Bias or t > 1 = use this light

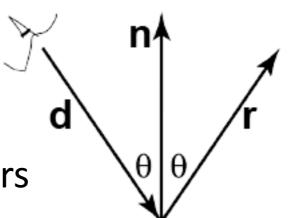


Mirror Reflection



Ray Tracing Reflection

- Viewer looking in direction d sees whatever the viewer "below" the surface sees looking in direction r
- In the real world
 - Energy loss on the bounce
 - Loss different for different colors
- New ray
 - Start on surface, in reflection direction



Calculating Reflection Vector

Angle of of incidence= angle of reflection

$$\hat{v} = -\hat{d}$$

• Decompose \hat{v}

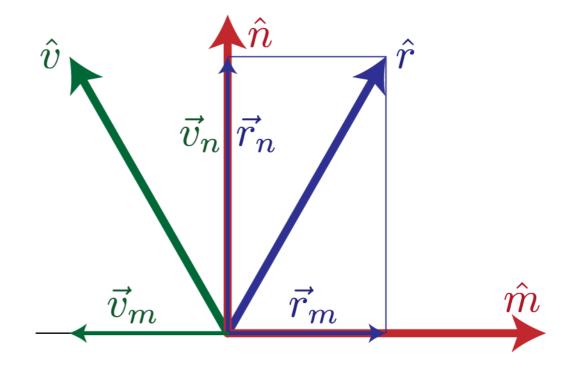
$$\vec{v}_n = (\hat{n} \cdot \hat{v})\hat{n}$$
$$\vec{v}_m = \hat{v} - (\hat{n} \cdot \hat{v})\hat{n}$$

• Recompose \hat{r}

$$\vec{r}_n = \vec{v}_n; \ \vec{r}_m = -\vec{v}_m$$

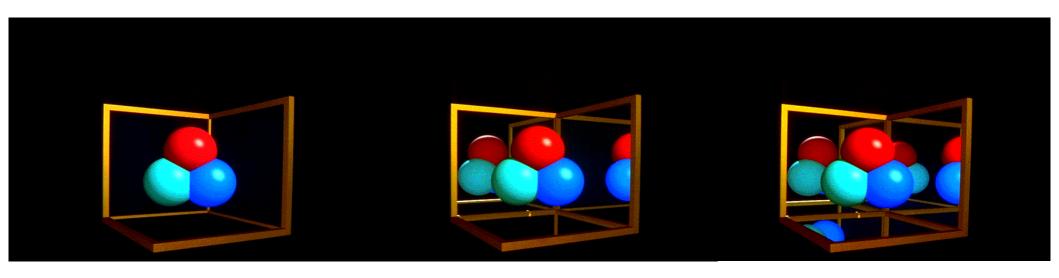
$$\hat{r} = \vec{r}_n + \vec{r}_m$$

$$\hat{r} = -\hat{v} + 2(\hat{n} \cdot \hat{v})\hat{n}$$



Ray Traced Reflection

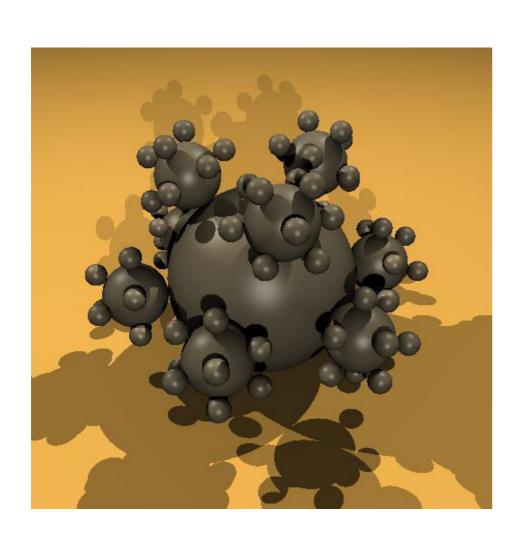
- Avoid looping forever
 - Stop after n bounces
 - Stop when contribution to pixel gets too small

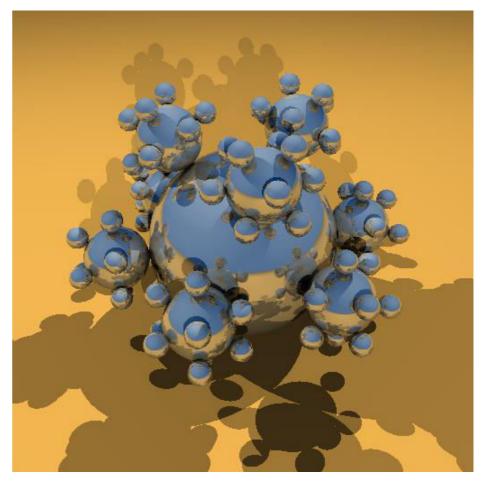


Specular Reflection

- Shiny reflection from rough surface
- Centered around mirror reflection direction
 - But more spread more, depending on roughness
- Easiest for individual light sources

Specular vs. Mirror Reflection

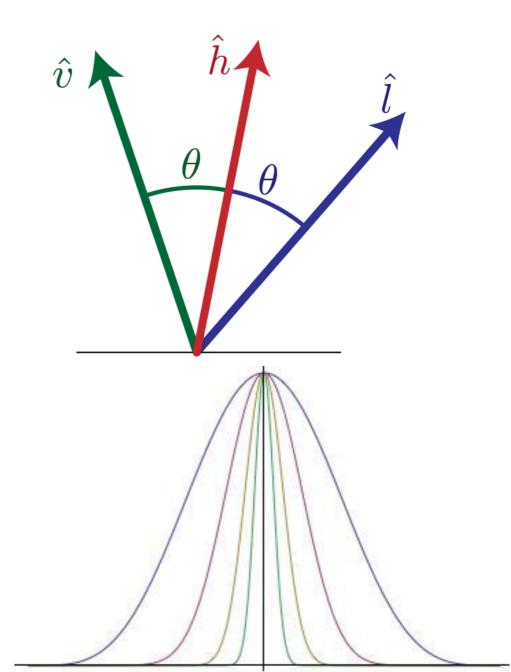




H vector

- Strongest for normal that reflects \hat{l} to \hat{v}
- $\hat{h} = \frac{\hat{l} + \hat{v}}{|\hat{l} + \hat{v}|}$
- $\hat{n} \cdot \hat{h}$
 - One at center of highlight
 - Zero at 90°
- Control highlight width

$$(\hat{n} \cdot \hat{h})^e$$

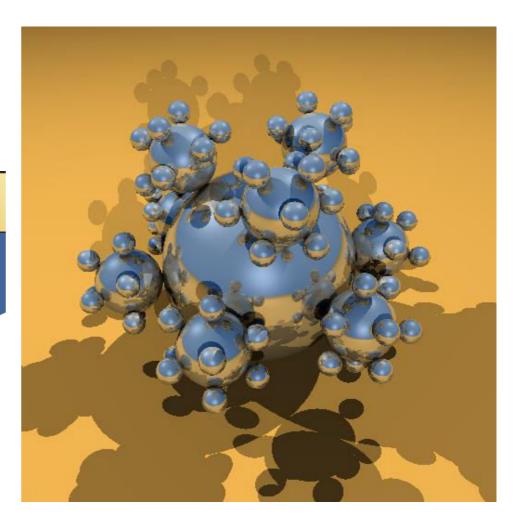


Combined Specular & Mirror

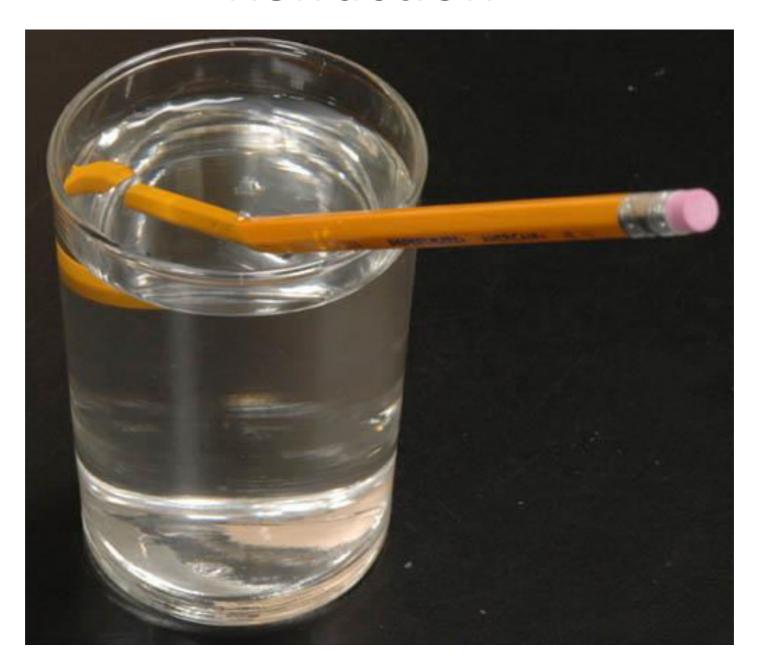
Many surfaces have both

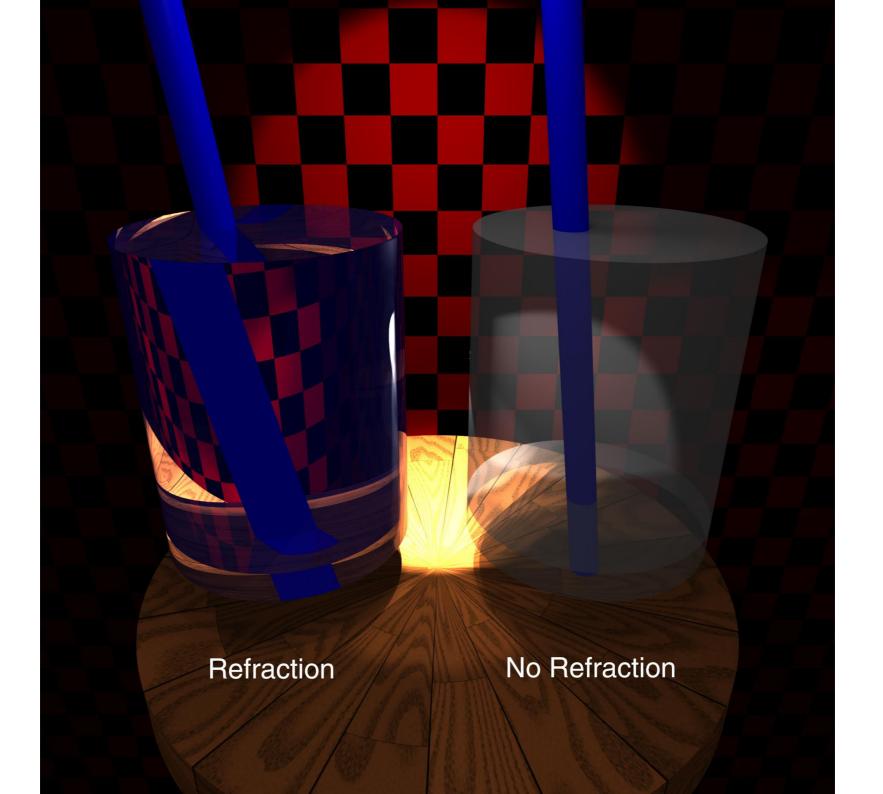
Clear layer

Base Surface

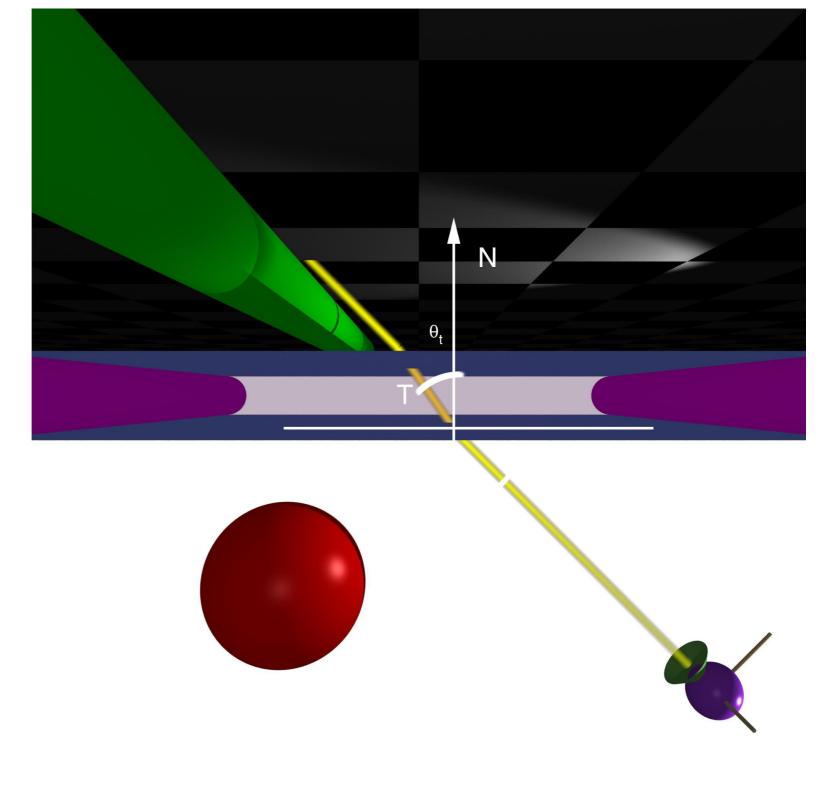


Refraction

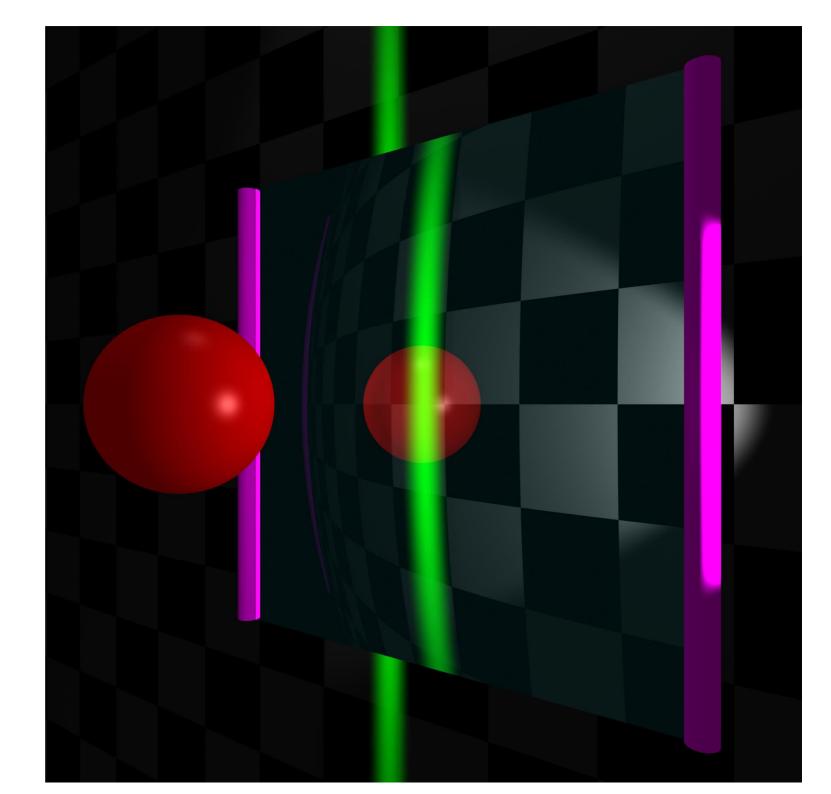




Top



Front



Calculating Refraction Vector

Snell's Law

$$n_v \sin \theta_v = n_t \sin \theta_t$$

• In terms of θ_t

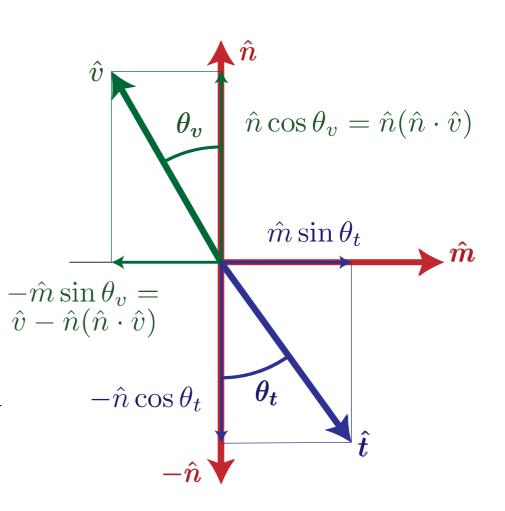
$$\hat{t} = \hat{m}\sin\theta_t - \hat{n}\cos\theta_t$$

• \hat{m} term

$$\hat{m} = (\hat{n}(\hat{n} \cdot \hat{v}) - \hat{v}) / \sin \theta_v \qquad \frac{-m_t}{\hat{v} - \hat{v}}$$

$$\hat{m} \sin \theta_t \qquad = (\hat{n}(\hat{n} \cdot \hat{v}) - \hat{v}) \sin \theta_t / \sin \theta_t$$

$$= (\hat{n}(\hat{n} \cdot \hat{v}) - \hat{v}) n_v / n_t$$



Calculating Refraction Vector

Snell's Law

$$n_v \sin \theta_v = n_t \sin \theta_t$$

• In terms of θ_t

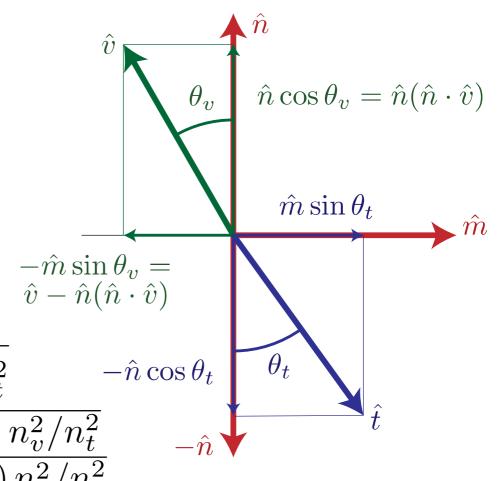
$$\hat{t} = \hat{m}\sin\theta_t - \hat{n}\cos\theta_t$$

• \hat{n} term

$$-\hat{n}\cos\theta_{t} - \hat{n}\sin\theta_{v} = \\ = -\hat{n}\sqrt{1 - \sin^{2}\theta_{t}} - \hat{n}\sin\theta_{v} = \\ = -\hat{n}\sqrt{1 - \sin^{2}\theta_{v}} n_{v}^{2}/n_{t}^{2} - \hat{n}\cos\theta_{t}$$

$$= -\hat{n}\sqrt{1 - (1 - \cos^{2}\theta_{v}) n_{v}^{2}/n_{t}^{2}} - \hat{n}\cos\theta_{t}$$

$$= -\hat{n}\sqrt{1 - (1 - (\hat{n}\cdot\hat{v})^{2}) n_{v}^{2}/n_{t}^{2}} - \hat{n}$$



Calculating Refraction Vector

Snell's Law

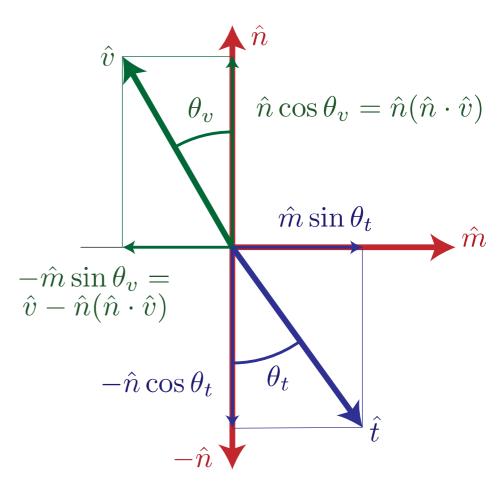
$$n_v \sin \theta_v = n_t \sin \theta_t$$

• In terms of θ_t

$$\hat{t} = \hat{m}\sin\theta_t - \hat{n}\cos\theta_t$$

• In terms of \hat{n} and \hat{v}

$$\hat{t} = (\hat{n}(\hat{n} \cdot \hat{v}) - \hat{v})n_v/n_t -\hat{n}\sqrt{1 - (1 - (\hat{n} \cdot \hat{v})^2) n_v^2/n_t^2}$$



Alpha Blending

- How much makes it through
- α = opacity
 - How much of foreground color 0-1
- $1-\alpha$ = transparency
 - How much of background color
- Foreground* α + Background*(1- α)

Refraction and Alpha

- Refraction = what direction
- α = how much
 - Often approximate as a constant
 - Better: Use Fresnel

$$F = \frac{1}{2} \left(\frac{n_v \ \hat{n} \cdot \hat{r} + n_t \ \hat{n} \cdot \hat{t}}{n_v \ \hat{n} \cdot \hat{r} - n_t \ \hat{n} \cdot \hat{t}} \right)^2 + \frac{1}{2} \left(\frac{n_v \ \hat{n} \cdot \hat{t} + n_t \ \hat{n} \cdot \hat{r}}{n_v \ \hat{n} \cdot \hat{t} - n_t \ \hat{n} \cdot \hat{r}} \right)^2$$

Schlick approximation

$$F_0 = (n_v - n_t)^2 / (n_v + n_t)^2$$

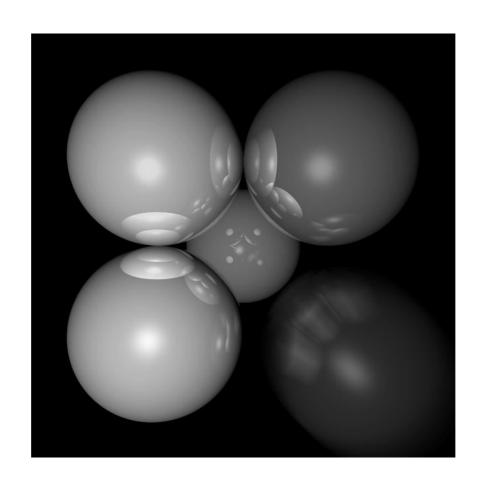
$$F \approx F_0 + (1 - F_0)(1 - \hat{n} \cdot \hat{v})^5$$

Full Ray-Tracing

- For each pixel
 - Compute ray direction
 - Find closest surface
 - For each light
 - Shoot shadow ray
 - If not shadowed, add direct illumination
 - Shoot ray in reflection direction
 - Shoot ray in refraction direction

Motion Blur

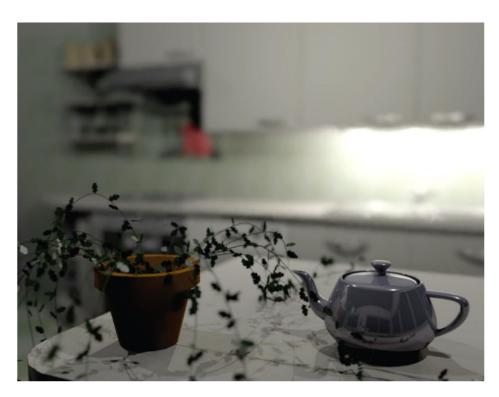
Things move while the shutter is open



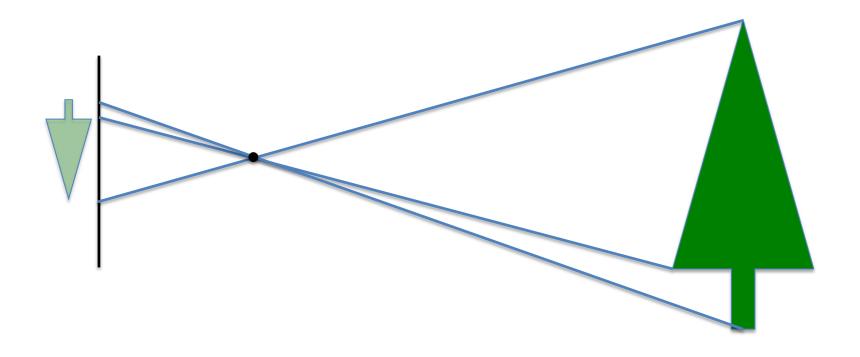
Ray Traced Motion Blur

- Include information on object motion
- Spread multiple rays per pixel across time

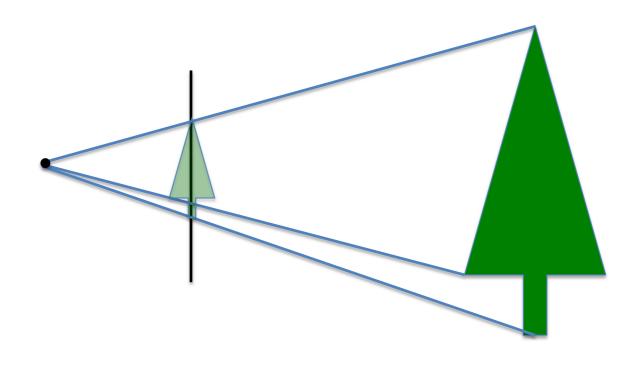
Depth of Field



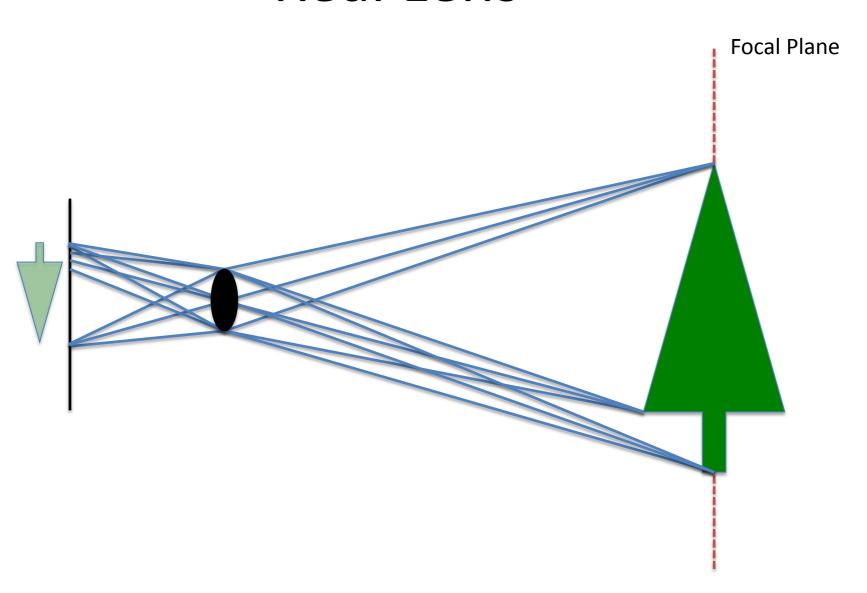
Pinhole Lens



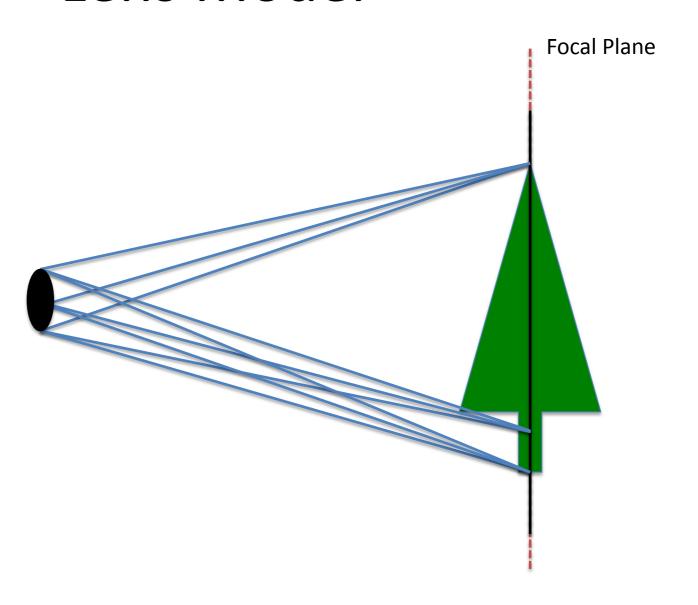
Lens Model



Real Lens



Lens Model



Ray Traced DOF

- Move image plane out to focal plane
- Jitter start position within lens aperture
 - Smaller aperture = closer to pinhole
 - Larger aperture = more DOF blur