Keyframe Animation

Animation

CMSC 435/634
Prof. Marc Olano

- From hand drawn animation
- Lead animator draws poses at key frames
- Inbetweener draws frames between keys
- Computer animation
- Can have separate keys for different attributes
- Interpolate between values at key frames

How to Interpolate

- Linear interpolation
- Value V_{0} at time $\mathrm{T}_{0}, \mathrm{~V}_{1}$ at time T_{1}
- Fraction of the way from T_{0} to T_{1}

$$
t=\left(T-T_{0}\right) /\left(T_{1}-T_{0}\right)
$$

- Lerp/mix equation

$$
v=(1-t) V_{0}+t V_{1}
$$

Spline

- Set of polynomials

$$
\vec{p}(t)=\vec{a} t^{3}+\vec{b} t^{2}+\vec{c} t+\vec{d}
$$

- 1 constraint per coefficient
- Positions $\quad \vec{p}(t)=\vec{a} t^{3}+\vec{b} t^{2}+\vec{c} t+\vec{d}$
- Velocities $\quad \overrightarrow{p^{\prime}}(t)=3 \vec{a} t^{2}+2 \vec{b} t+\vec{c}$
- Acceleratio $\overrightarrow{\beta^{\prime \prime}}(t)=6 \vec{a} t+2 \vec{b}$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\overrightarrow{p^{\prime}}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \overrightarrow{p^{\prime}}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\overrightarrow{p^{\prime}}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \vec{p}^{\prime}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\begin{aligned}
\vec{p}_{0} & =\vec{a} 0^{3}+\vec{b} 0^{2}+\vec{c} 0+\vec{d} \\
\vec{p}_{3} & =\vec{a} 1^{3}+\vec{b} 1^{2}+\vec{c} 1+\vec{d} \\
3\left(\vec{p}_{1}-\vec{p}_{0}\right) & =3 \vec{a} 0^{2}+2 \vec{b} 0+\vec{c} \\
3\left(\vec{p}_{3}-\vec{p}_{2}\right) & =3 \vec{a} 1^{2}+2 \vec{b} 1+\vec{c}
\end{aligned}
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\overrightarrow{p^{\prime}}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \overrightarrow{p^{\prime}}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{c}
\vec{p}_{0} \\
\vec{p}_{3} \\
3\left(\vec{p}_{1}-\vec{p}_{0}\right) \\
3\left(\vec{p}_{3}-\vec{p}_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
\vec{d} \\
\vec{a}+\vec{b}+\vec{c}+\vec{d} \\
\vec{c} \\
3 \vec{a}+2 \vec{b}+\vec{c}
\end{array}\right]
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\overrightarrow{p^{\prime}}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \overrightarrow{p^{\prime}}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{c}
\vec{p}_{0} \\
\vec{p}_{3} \\
3\left(\vec{p}_{1}-\vec{p}_{0}\right) \\
3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\overrightarrow{p^{\prime}}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \overrightarrow{p^{\prime}}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{c}
\vec{p}_{0} \\
\vec{p}_{1} \\
\vec{p}_{2} \\
\vec{p}_{3}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\vec{p}^{\prime}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \vec{p}^{\prime}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{ccc}
\vec{p}_{0} & & \\
-3 \vec{p}_{0} & +3 \vec{p}_{1} & \\
\vec{p}_{3} \\
\hline & -3 \vec{p}_{2} & +3 \vec{p}_{3}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\vec{p}^{\prime}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \overrightarrow{p^{\prime}}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{l}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]^{-1}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\vec{p}_{0} \\
\vec{p}_{1} \\
\vec{p}_{2} \\
\vec{p}_{3}
\end{array}\right]
$$

Bezier Spline

- All constraints from control points:

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{0} ; & \vec{p}(1)=\vec{p}_{3} ; \\
\overrightarrow{p^{\prime}}(0)=3\left(\vec{p}_{1}-\vec{p}_{0}\right) ; & \vec{p}^{\prime}(1)=3\left(\vec{p}_{3}-\vec{p}_{2}\right)
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{l}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\vec{p}_{0} \\
\vec{p}_{1} \\
\vec{p}_{2} \\
\vec{p}_{3}
\end{array}\right]
$$

Bezier Basis Functions

- Computing position
$\vec{p}(t)=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}\vec{p}_{0} \\ \vec{p}_{1} \\ \vec{p}_{2} \\ \vec{p}_{3}\end{array}\right]$

Bezier Basis Functions

- Computing position

$$
\vec{p}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]
$$

Bezier Basis Functions

- Group by ti: coefficients

$$
\vec{p}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left(\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\vec{p}_{0} \\
\vec{p}_{1} \\
\vec{p}_{2} \\
\vec{p}_{3}
\end{array}\right]\right)
$$

Bezier Basis Functions

- Group by p_{i} : Basis Functions
$\vec{p}(t)=\left(\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\right)\left[\begin{array}{l}\vec{p}_{0} \\ \vec{p}_{1} \\ \vec{p}_{2} \\ \vec{p}_{3}\end{array}\right]$

Catmull-Rom Spline

- Constraints

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{1} ; & \vec{p}(1)=\vec{p}_{2} ; \\
\overrightarrow{p^{\prime}}(0)=\left(\vec{p}_{2}-\vec{p}_{0}\right) / 2 ; & \overrightarrow{p^{\prime}}(1)=\left(\vec{p}_{3}-\vec{p}_{1}\right) / 2
\end{array}
$$

Bezier Basis Functions

- Cubic Bezier basis functions

$$
\begin{array}{ll}
B_{0}^{3}(t)=-t^{3}+3 t^{2}-3 t+1 & =(1-t)^{3} \\
B_{1}^{3}(t)=3 t^{3}-6 t^{2}+3 t & =3(1-t)^{2} t \\
B_{2}^{3}(t)=-3 t^{3}+3 t^{2} & =3(1-t) t^{2} \\
B_{3}^{3}(t)=t^{3} & =t^{3}
\end{array}
$$

Catmull-Rom Spline

- Constraints

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{1} ; & \vec{p}(1)=\vec{p}_{2} ; \\
\vec{p}^{\prime}(0)=\left(\vec{p}_{2}-\vec{p}_{0}\right) / 2 ; & \overrightarrow{p^{\prime}}(1)=\left(\vec{p}_{3}-\vec{p}_{1}\right) / 2
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{c}
\vec{p}_{1} \\
\vec{p}_{2} \\
\left(\vec{p}_{2}-\vec{p}_{0}\right) / 2 \\
\left(\vec{p}_{3}-\vec{p}_{1}\right) / 2
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]
$$

Catmull-Rom Spline

- Constraints

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{1} ; & \vec{p}(1)=\vec{p}_{2} ; \\
\vec{p}^{\prime}(0)=\left(\vec{p}_{2}-\vec{p}_{0}\right) / 2 ; & \overrightarrow{p^{\prime}}(1)=\left(\vec{p}_{3}-\vec{p}_{1}\right) / 2
\end{array}
$$

- Resulting equations:
$\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 / 2 & 0 & 1 / 2 & 0 \\ 0 & -1 / 2 & 0 & 1 / 2\end{array}\right]\left[\begin{array}{l}\vec{p}_{0} \\ \vec{p}_{1} \\ \vec{p}_{2} \\ \vec{p}_{3}\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0\end{array}\right]\left[\begin{array}{c}\vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d}\end{array}\right]$

Catmull-Rom Spline

- Constraints

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{1} ; & \vec{p}(1)=\vec{p}_{2} ; \\
\vec{p}^{\prime}(0)=\left(\vec{p}_{2}-\vec{p}_{0}\right) / 2 ; & \overrightarrow{p^{\prime}}(1)=\left(\vec{p}_{3}-\vec{p}_{1}\right) / 2
\end{array}
$$

- Resulting equations:

$$
\left[\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right]=\left[\begin{array}{cccc}
-1 / 2 & 3 / 2 & -3 / 2 & 1 / 2 \\
1 & -5 / 2 & 2 & -1 / 2 \\
-1 / 2 & 0 & 1 / 2 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\vec{p}_{0} \\
\vec{p}_{1} \\
\vec{p}_{2} \\
\vec{p}_{3}
\end{array}\right]
$$

Catmull-Rom Spline

- Constraints

$$
\begin{array}{ll}
\vec{p}(0)=\vec{p}_{1} ; & \vec{p}(1)=\vec{p}_{2} ; \\
\vec{p}^{\prime}(0)=\left(\vec{p}_{2}-\vec{p}_{0}\right) / 2 ; & \vec{p}^{\prime}(1)=\left(\vec{p}_{3}-\vec{p}_{1}\right) / 2
\end{array}
$$

- Resulting equations:
$\left[\begin{array}{l}\vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d}\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0\end{array}\right]^{-1}\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 / 2 & 0 & 1 / 2 & 0 \\ 0 & -1 / 2 & 0 & 1 / 2\end{array}\right]\left[\begin{array}{c}\vec{p}_{0} \\ \vec{p}_{1} \\ \vec{p}_{2} \\ \vec{p}_{3}\end{array}\right]$

Catmull-Rom Basis Functions

What to Interpolate

- What controls to artists need?
- How to convert those into transformations?

Position and Orientation

- Objects can move!
- Keys:
- Separate control of position and orientation
- Never interpolate matrices!
- They won't do what you want.
- Quaternions interpolate better than Euler anglesin $\left.(\theta / 2), \hat{a}_{y} \sin (\theta / 2), \hat{a}_{z} \sin (\theta / 2), \cos (\theta / 2)\right]$
- But angles make a better animation interface
- Can still convert to quaternion for interpolation
- Possible to use directly for rotation, or convert to matrix

Squash and Stretch

- Defining the rigidity and mass of an object by distorting its shape during an action
- Examples:
- Ball flattening during bounce
- Facial animation - cheeks squash during smile

Squash and Stretch

- Keys
- Volume constant
- Different materials respond differently
- Need not deform
- Use stretching to eliminate strobing from fast action
- Method
- Can use scale to conserve volume (up in one dimension down in others)

Slow In and Out

- The spacing of the in between frames to achieve subtlety of timing and movement
- Example:
- Moving from place to place: start and end slow

Slow In and Out

Arcs

- The visual path of action for natural movement
- Examples:
- Thrown ball
- Keys
- Arc movements are more natural than lines
- Keys
- Think about continuity of second and third order motion
- Reparameterize time
$t_{\text {new }}=3 t^{2}-2 t^{3}$

Character Animation

- Control
- Hierarchical model
- Forward kinematics
- Inverse kinematics
- Motion capture
- Rendering
- Skinning
- Blend Shapes
- Deformation

Forward Kinematics

- Given a set of joint angles, where's the hand?
- (or foot or head or ...)
- End effector
- Just apply nested transforms
- We know how to do that!

Inverse Kinematics

- Find angles to match end effector position
- Few joints: system of equations
- Many joints: optimization
- Often with constraints
- (wrist doesn't bend that way)
- And heuristics
- Minimal change
- Load support
- Physical data

Forward Kinematics

- Character is holding something in their right hand, want to shift it to the left hand
- Forward transform up tree
- Inverse transform back down
- Think of matrices as X_{-}from_Y
- X_{-}from_ Y * Y from_ $Z=X_{-}$from_ Z
$-X$ from_ $Y^{-1}=Y_{-}$from_X

Motion Capture (mocap)

- Track markers on actor
- Infer transforms
- Often significant artistic cleanup

Skinning

- Don't like intersecting joints
- Animate "skeleton"
- Just joint transforms, no geometry
- Each vertex in "skin"
- Linear blend of one or more joint transforms
- E.g. α Shoulder $+\beta$ Arm
- Can retarget same animation to different skins

Deformation

- Nonlinear function $p^{\prime}=f(p)$
- Affine transform as a function of position
- Bend $=$ RotateX(z), twist $=$ RotateZ(z)
- Free form deformation (FFD)
- 3D spline: $p(s, t, u)$
- Like object is embedded in jello

Blend Shapes

- Sculpted vertex positions in key poses
- Blend positions
- Good when skeletons don't work well
- Most often used for facial animation

Physics-based Animation

- Generally: simulating the laws of physics to predict motion
- Common applications:
- Fluids, gas
- Cloth, hair
- Rigid body motion
- Approach: model change as differential equations

Autonomous Objects/Groups

- Generally: create complex group behavior by defining relatively simple individual behavior
- Common applications:
- Flocks, crowds
- Particle systems
- Approach: leverage Al techniques

