
Ruby

Intro

Ruby was �rst released in 1995 by Yukihiro "Matz" Matsumoto
It took several years to gain popularity outside of Japan

In 2004, Ruby's popularity increased with the release of the Rails package
Current version is 2.5.0

Technical Details

Is a scripting language
Is very object oriented

Everything is an object!
The original interpreter was replaced with YARV (Yet another Ruby VM) in 2009

Lead to a large performance boost
Great support for both text processing as well as interacting with the OS

Popular Projects in Ruby

Ruby on Rails
A popular web framework, an alternative to PHP

GitHub's Linguist
The code responsible for determing the language a �le is written in

Homebrew
A Linux style package manager available for MacOS

Vagrant
Software to manage VMs

Running Ruby

Ruby is run differently depending on if it is interactive or batch mode
The interactive ruby interpreter is launched using the command irb
To run an existing �le, use the ruby command

Files usually end in .rb

Integers

Everything is an object!! Including integers

There are two integer types, Ruby will switch between them as needed
Fixnum
Bignum

5.+(4) == 5 + 4

In []:

In []:

5.+(4) == 5 + 4

5.class

In []: alot = 200 ** 200

puts alot

puts alot.class

Integer Methods

There is no decrement or increment method, so code needs to use something like

Conversion methods
5.to_s

5.to_f

Common mathemetical methods
.abs

.even?

5[0]

counter += 1

counter = counter.next

In []:

In []:

In []:

10.next

-1.abs()

puts 1.even?

puts 2.even?

In []:

In []:

print 5[0], 5[1], 5[2]

print 4[0], 4[1], 4[2]

Floats

Floats in Ruby are double precision, so they can over�ow
Most standard mathematicl methods are available

10.50.ceil

10.50.round

10.50.to_i

10.50.to_r

In []:

In []:

In []:

In []:

10.50.to_i

10.5.to_r

10.49.round

10.49.ceil

Strings

Strings can be single or double quotes
Single quotes strings don't evaluate escapes like \n, etc.

Variable interpolation is available in double quoted strings only
The syntax is #{varname}

Many string methods exist in two forms
Those that return a string are named normally
Those that modify the string in place have a ! at the end of the method
name

In []:

In []:

In []:

str = "A string. A nother"

int = 10

str.upcase

str.capitalize

In []:

In []:

In []:

str.downcase!

puts str

str.length

str.ascii_only?

In []:

In []:

puts " soooo many spacess and such".squeeze

puts " soooo many spacess and such".squeeze(" s")

puts str.include?("ri")

puts str.include?("ro")

In []: puts "Hello, you are #{str}"

puts "Hello, you are #{str.upcase}"

puts "Hello you are a float now: #{int.to_f}"

Arrays

Arrays are Ruby's list type
They are heterogenous

They can be created using the Array constructor

The shortcut syntax to initialize an array is

Array.new(capacitiy,initial)

 var = [1, 2, 3, 4]

Array Indexing

Ruby supports negative indexing from the end of the array
Ruby also has two ways to get a subsection of the list

array[index,howmany]

array[start..end]

Must have a value for end, could be -1

In []:

In []:

In []:

arr = [10,20,4,6,7,1,20,0,nil]

puts arr[0]

puts arr[-2]

puts arr[1,2]

puts arr[4,1]

puts arr[0..2]

puts arr[5..-1]

Array Methods

There are many many array methods
Common/Interesting ones are:

.push/.pop

.compact - removes nil elements

.uniq

.inspect

In []:

In []:

In []:

puts arr.compact

puts arr.uniq

puts arr.inspect

Set Operations

Arrays can also be used like sets, by applying set operations between two arrays
& - Set Intersection
| - Set Union

There is also the difference operator, but this isn't set difference

In []:

In []:

In []:

In []:

[1, 2, 4, 4] | [5, 6 ,7]

[1, 2, 4, 4] & [5 , 6, 7]

[1, 2, 4, 4] & [4, 10, 20]

[1 ,2 , 3 ,4 ,4] - [1]

Hashes

The associative array structure in Ruby is a hash
Can be declared using Hash.new, but is often initialized expclicitly

The key can be any type
To set a default value for keys not in the hash, pass it as a paramter to the
constructor

hash = {'key1' => 'val1' , 'key2' => 'val2',}

In []: hash1 = {'google' => 'www.google.com', 'umbc' => 'umbc.edu',

 'state of maryland' => 'md.gov'}

hash2 = Hash.new(0)

puts hash1

puts hash2

Hashes

Indexing into hashes is done using square brackets ([]) like arrays
New keys can be added by using square brackets as well
Common hash methods

.keys/ .values

.has_key?

.delete

.invert

In []:

In []:

In []:

puts hash1['google']

puts hash1['something']

puts hash2['not_here']

In []:

In []:

In []:

puts hash1.keys

puts hash2.has_key?("not_here")

hash2["not_here"] = 10

puts hash2.invert.inspect

hash3 = hash2.invert

puts hash3['missing']

Control Structures

If
then is optional, but exists
elsif

Case
Uses keyword case
Cases are denoted using when

Can be any logical statement

In []: if 10 > 11 then puts "HMMM" else puts "Seems good" end

In []: a = 1

b = 2

if a > b

 puts "#{a} is bigger than #{b}"

elsif a == b

 puts "#{a} equals #{b}"

else

 puts "#{a} is less than #{b}"

end

In []: result = if a > b

 "#{a} is bigger than #{b}"

elsif a == b

 "#{a} equals #{b}"

else

 "#{a} is less than #{b}"

end

puts "I have compared #{a} and #{b} and have determined that #{result}"

In []: case "Hello"

 when /^A/

 puts "You start with an A"

 when /^H/

 puts "You start with an H"

 else

 puts "You start with something else"

end

In []: number = 10

case

 when number % 2 == 0

 puts "#{number} is even"

 when number % 2 == 1

 puts "#{number} is odd"

end

For Loops

There is no count-based for loop in Ruby
The for-in loop takes its place, and it useful, but there is a much better solution in
Ruby
for var in array

 #Do something

end

In []: arr = [1,2,4,"Thing",nil]

for el in arr

 puts el

end

In []: hash = {'today' => "Thursday", "tomorrow" => "Friday"}

for el in hash

 puts el

end

In []: hash = {'today' => "Thursday", "tomorrow" => "Friday"}

for k,v in hash

 puts "#{k.capitalize} is #{v}"

end

Iterators

Almost every object has at least one method that is an interator
This is a special method that you can provide a block of code to

The block can be one line between curly braces
Can be multiple lines, denoted by do |vars| ... end

Common Iterators

Intengers

.times

.upto/.downto

Arrays and Hashes

.each

Strings

.each_line

.each_char

In []: 5.times {puts "Hi"}

In []: 5.upto(10) do |i|

 puts i * i

end

In []: 5.downto(10) do |i|

 puts i * i

end

In []: hash = {'today' => "Thursday", "tomorrow" => "Friday"}

hash.each {|k,v| puts "#{k.capitalize} is #{v}"}

In []: str_long = "This is a really long string\n I have put some new line characters\n t

o see what happens"

str_long.each_line do |l|

 puts l.strip

end

In []: str_long.each_char do |l|

 puts l.strip

end

Methods

Methods in Ruby are de�ned using the def keyword
They don't need to be in a class
Global variables in Ruby must start with a $
To process a block, use the yield keyword

In []: def square(i)

 i * i

end

square(10)

In []:

In []:

def wrapper(i)

 yield

end

wrapper(10) {puts "Hello"}

In []:

In []:

def wrapper_with_var

 x = yield("Hello")

 puts "Yield returned #{x}"

end

wrapper_with_var do |i|

 puts "i was passed as #{i}"

 i.downcase

end

Process Control

Ruby is often used as a nicer system scripting language
The method system will run the enclosed commands, returning true or false
To get data back from a system call, it needs to be opened using the IO class

IO.popen {block}

The block takes one parameter, a stream, that we can use to gets data
from

In []: IO.popen("ls -lh *.html") do |stream|

 while line = stream.gets do

 parts = line.split(" ")

 puts "#{parts[-1]} is #{parts[4]} big"

 end

end

In []: IO.popen("ls -lh *.html") do |stream|

 stream.each do |line|

 parts = line.split(" ")

 puts "#{parts[-1]} is #{parts[4]} big"

 end

end

Objects

You can make your own objects....because everything is an object
Pre�x with the class keyword

Name must start with a capital letter
A member variable should start with @

This makes it private
The constructor is written as intialize
Getters have the same name as the variable you are trying to get, setters do too,
but end with =

In []: class TIME

 def initialize(hour,min)

 @hour = hour

 @min = min

 end

 def hour

 @hour

 end

 def hour=(nHour)

 @hour = nHour

 end

 def to_s

 "It's #{@hour}:#{@min}"

 end

end

In []: now = TIME.new(11,15)

puts now

Objects Continued

To overload an operator, use the literal operator name
To overload +, de�ne + in your class

Classes in Ruby are open, meaning they can be added to at any time
The syntax is the same, and methods are either added or overwritten
This applies to classes that are de�ned as part of the Ruby langauge too!

In []:

In []:

class TIME

 def min

 @min

 end

 def +(anotherTime)

 TIME.new(self.hour + anotherTime.hour,

 self.min + anotherTime.min)

 end

end

puts now + TIME.new(11,12)

In []:

In []:

class Array

 def beMean

 self[0] , self[-1] = self[-1], self[0]

 end

end

arr = [1,43,9,68,19,6890,185,3]

arr.beMean

puts arr

Gems

Packages in Ruby are known as Gems
The gem command line program is usually installed when installing Ruby

The main repository is

gem install packageName

RubyGems.org

https://rubygems.org/

