
Julia

What is ?

First developed in 2012
Is a high-level numerical computing library

Meant to be general purpose too
Inspired by Python, R, MATLAB, Java, C++, FORTRAN, LISP,

Is a functional language underneath it all
Speed is a high priority
Has built-in support for distribution and parallelization

Julia

https://julialang.org/

Technical Details

Code is compiled using JIT compilation
Compiled to LLVM code (can be seen using the @code_llvm macro)

Types are very important, even if they are optional
Functions are called using multiple-dispatch
Think R style OOP on Steriods

In []: methods(+)

Popularity

Since it debuted, Julia has gained a lot of fans in various communities
Seems to be a large user-base growing in econ

The Federal Reserve Bank of New York has modeled the economy of the
US using Julia

Also popular with traditional large scale computing applications like Astrononmy
In September 2017, Julia became one of a handful of langauges capable
of performing over 1 peta�op per second

https://juliacomputing.com/press/2017/09/12/julia-joins-petaflop-club.html

Comparison to Python

Because of its easy of use, Julia is a common language for Python programmers to
play with, this usually goes one of two ways

It's actually not that fast
I can make Python just as fast

The Julia team has written their own comparison (based on syntax) to many
languages, available at https://docs.julialang.org/en/latest/manual/noteworthy-
differences/?highlight=differences

https://docs.julialang.org/en/latest/manual/noteworthy-differences/?highlight=differences

Unicode Variable Names

One of the more unique aspects of Julia is that mathematical symbols and non-
Latin characters are very well supported
To promote this, all Julia REPL systems, and most Julia IDEs allow auto completion
to a non unicode character

Based on LATEX symbol names
To type the letter alpha

Type \alpha followed immediately by a TAB

In []: x = 10

println(x)

In []: β = 0.1

println(β)

Numbers

As a numerical computing language, Julia has a very robust number system
A large number of types

Most mathematical functions are built in
When typing large numbers, the _ (underscore) can be used a separator, it is
simply ignored
If over�ow happens, cast the intenger to big using big(number)

In []: 1_000_000_000 + 1

In []: 1_00_00_00_00_00 + 1

In []: 4000000000000000 * 4e300

In []: big(4000000000000000) * 4e300

Standard Mathematical Operations

Mathematical functions in Julia are similar to functional programming languages
in that they take many arguments

Julia has two divisions
/ which is �oating point division

 or div which is intenger division
When multipying variables with a number, no symbol is needed, just like in math

1 + 2 + 3 == +(1,2,3)

÷

In []: 3 + 2 + 1

In []: 3 * 2 * 1

In []: 4 ^ 5

In []: 4 % 5

In []: @code_native 1 + 2 + 3

In []: @code_native +(1,2,3)

In []: 3/2

In []: 3 ÷2

In []: div(3,2)

In []: x = 20

4 * x + 3

In []: y = 10

(10)(4)(x * y) + 3

Built-In Mathematical Functions

sqrt or
sin, cos, etc.
lcm and gcd
abs and sign

∗–√

In []: sqrt(200)

In []: √200

In []: sin(pi/2)

In []: cos(pi/2)

In []: lcm(100,5,20,40)

In []: gcd(100,5,20,40)

In []: abs(10)

In []: abs(-10)

In []: sign(-10)

Built-In Mathematical Constants

pi or
e

golden or (\varphi NOT \phi)

π

φ

In []: sin(π/2)

In []: log(e)

In []: φ

User-De�ned Functions

To de�ne a function in Julia, use the keyword function
The function de�nition is ended with the keyword end

Short functions can be de�ned like f(x) = x * x
Julia Functions support default values, named parameters, etc.

In []: function my_first_function(a,b,c)

 a + b * c

end

In []:

In []:

In []:

my_first_function(1,2,4)

my_first_function(1,2,3.5)

my_first_function(1,4//5,4)

In []:

In []:

In []:

function defaults(a,b=10,c=20)

 a + b + c

end

methods(defaults)

defaults(10)

In []: @code_native defaults(10)

In []: z(x) = 4x + 3

z(10)

Lambda

Julia supports anonymous functions through a syntax similar to Java

Lambdas with multiple parameters should be wrapped up in a tuple

arguments -> function_body

(a,b,c) -> function_body

In []: x = y->10y

x(10)

In []: map(x -> x*x , [1 2 3 4])

Arrays

Arrays are one of the primary datatypes of Julia
Created using []
Indexing starts at 1
Negative indexing is replaced with the end keyword

All operators can be used on arrays as well
Special functions like mean, median, etc exist for arrays

In []: my_array = [1 2 3 4 5 6]

my_array[0]

In []: my_array[1]

In []: my_array[end]

In []: my_array[end-1]

In []: my_array = [1,2,3,4]

my_array + 4

In []: my_array * 4

In []: √my_array

In []: mean(my_array)

Multi-Dimensional Arrays

To create a 2 dimensional array in Julia
Separate the elements by spaces
Separate the rows by semicolons

Comma separated elements creates a column vector, space separated elements a
row vector

[1 2 3 4; 5 6 7 8]

In []: [1 2 3 4;

 5 6 7 8]

In []: [1 2 3 4; 5 6 7 8; 9 10 11 12]

In []: [1 2 3 4]

In []: [1,2,3,4]

Dot Notation on Function Names

Any function you write can automatically be applied element-wise to an array
Just append a dot . after the function name but before the parentheses
This is faster than using map or a for loop most of the time

In []: c = 123456

test = [1 8 1 9 0 4 8 1 6 3]

f(x) = x + c

In []: @time map(f,test)

In []: @time test + c

In []:

In []:

In []:

In []:

@time f.(test) #Only works in Julia 0.5 + :(

two_d = [1 8 1; 9 0 4; 8 1 6]

@time map(f,two_d)

@time f.(two_d)

@time two_d + c

Types

Much of Julia's speed comes from Type system
By Dynamically inferring types, the most optimized version (both in
algorithm and in assembly) can be called

To specify a type for a variable, use the syntax

To look at the built in type heirarchy, use the functions subtypes and super or
supertype in new versions of Julia

name::TYPE

In []: supertype(Number)

In []: supertype(Float64)

In []: subtypes(AbstractString)

In []: subtypes(Number)

In []: subtypes(Any)

In []: function typed(x)

 x ^ 3

end

function typed(x::Integer)

 x ^ 3

end

In []: @time typed(10.0)

In []: @time typed(10)

In []: ## From https://en.wikibooks.org/wiki/Introducing_Julia/Types

function t1(n)

 s = 0

 for i in 1:n

 s += s/i

 end

 end

In []: ## From https://en.wikibooks.org/wiki/Introducing_Julia/Types

function t2(n)

 s = 0.0

 for i in 1:n

 s += s/i

 end

 end

In []: @time t1(10000000)

In []: @time t2(10000000)

User De�ned Types

User de�ned types are just structs, similar to typedef
The functions that operate on them will be written separately, like in R
The constructor needs to have the same name as the type, and should
call new() at the end,

These user de�ned types can then be used to make new methods or overload
existing ones

struct name #(type in older versions)

 member1::type1

 member2::type2

end

In []: type TIME #struct TIME in Julia > 0.5

 hour::Integer

 minute::Integer

end

In []: x = TIME(10,30)

In []: x.hour

Overloading Methods

Now that we know about types, we can overload existing functions like +
De�ne a function as you normally would, using the appropriate function name

+ is properly known as Base.:+
Specify your speci�c types as the parameters

In []: importall Base.Operators

function Base.:+(a::TIME, b::TIME) #New style is just Base.:+

 TIME(a.hour + b.hour, a.minute + b.minute)

end

In []: x + TIME(11,30)

Strings

While Julia was concieved as a numerical computation langauge, processing
strings is an important part of any language
Strings must be delimited using double quotes

Single quotes indicate a character, which is a different data type
Numerous string functions are available in the base class, including regular
expression support

The concatentation operator is * NOT +
Strings can be accessed like arrays

In []: string = "Hello"

uni = "Helαβ"

println(typeof(string) , " ", typeof(uni))

In []: string * uni

In []: string ^ 3

In []: another="Hello is $string and $uni"

For Loops

For loops must be ended with the keyword end
For loops always use the in keyword

To make a count style loop, use the array creation shortcut of
start:step:end

In []: for x in [1 2 3 4 5]

 println(x)

end

In []: for x in 1:1:5

 println(x)

end

In []: for x in 1:5

 println(x)

end

Parallel For Loops

The @parallel macro turns any loop into a parallel loop
Data is not shared between iterations of the loop by default

Can declare variables as shared
The @parallel macro can take one argument, which will be the reduce
function

In []:

In []:

In []:

nworkers()

addprocs(4)

nworkers()

In []: a = SharedArray{Float64}(10)

@parallel for i = 1:10

 print(i)

 a[i] = i

end

print(a)

In []: a = SharedArray{Float64}(10)

@sync @parallel for i = 1:10

 print(i)

 a[i] = i

end

print(a)

In []: a = SharedArray{Float64}(10)

fut = @parallel for i = 1:10

 print(i)

 a[i] = i

end

for x in fut

 fetch(x)

end

print(a)

In []:

In []:

@time nheads = @parallel (+) for i = 1:200000000

 Int(rand(Bool))

end

nheads_old = 0

@time for i = 1:200000000

 nheads_old += Int(rand(Bool))

end

If Statement

If statements use the keywords if, elseif, else, and end
The end keyword goes at the end of the entire block
There is no special braces, colons, parentheses or anything else

In []: x = 20 + 4

if x > 50

 println("GOOD")

elseif x < 20

 println("BAD")

else

 println("OK")

end

In []: (2+3)::Float64

Modules

Julia has a robust module system, and packages can be seend at

To install new packages use the command Pkg.add(PACKAGENAME)
To use the newly installed package use

using - Places functions in global namespace
import - Need to access using module name

You can also include a �le directly using include(), and require()

https://pkg.julialang.org/

https://pkg.julialang.org/

