Julia

What is Julia?

e First developedin 2012

Is a high-level numerical computing library
= Meant to be general purpose too

Inspired by Python, R, MATLAB, Java, C++, FORTRAN, LISP,
= |s afunctional language underneath it all

Speed is a high priority

Has built-in support for distribution and parallelization

https://julialang.org/

Technical Details

e Codeis compiled using JIT compilation

= Compiled to LLVM code (can be seen using the @code_llvm macro)
e Types are very important, even if they are optional

= Functions are called using multiple-dispatch

= Think R style OOP on Steriods

In [

]:

methods (+)

Popularity

e Since it debuted, Julia has gained a lot of fans in various communities
e Seems to be alarge user-base growing in econ
= The Federal Reserve Bank of New York has modeled the economy of the
US using Julia
e Also popular with traditional large scale computing applications like Astrononmy
= |n September 2017, Julia became one of a handful of langauges capable
of performing over 1 petaflop per second

https://juliacomputing.com/press/2017/09/12/julia-joins-petaflop-club.html

Comparison to Python

e Because of its easy of use, Julia is a common language for Python programmers to
play with, this usually goes one of two ways
= |t's actually not that fast
= | can make Python just as fast
e The Julia team has written their own comparison (based on syntax) to many
languages, available at https://docs.julialang.org/en/latest/manual/noteworthy-
differences/?highlight=differences

https://docs.julialang.org/en/latest/manual/noteworthy-differences/?highlight=differences

Unicode Variable Names

¢ One of the more unique aspects of Julia is that mathematical symbols and non-
Latin characters are very well supported
e To promote this, all Julia REPL systems, and most Julia IDEs allow auto completion
to a non unicode character
= Based on LATEX symbol names
e Totype the letter alpha
= Type \alpha followed immediately by a TAB

In [

]:

x = 10
println (x)

In [

]:

B = 0.1
println (B)

Numbers

e As anumerical computing language, Julia has a very robust number system
= A large number of types

e Most mathematical functions are built in

e When typing large numbers, the (underscore) can be used a separator, it is
simply ignored

e If overflow happens, cast the intenger to big using big (number)

In [

]:

1 000 000 000 + 1

In [

]:

1 .00 00 00 00 00 + 1

In [

]:

4000000000000000 * 4e300

In [

]:

big (4000000000000000)

* 4e300

Standard Mathematical Operations

e Mathematical functions in Julia are similar to functional programming languages
in that they take many arguments
1 +2+ 3 ==+(1,2,3)
e Julia has two divisions
= / which is floating point division
= = or div whichis intenger division
e When multipying variables with a number, no symbol is needed, just like in math

In [

]:

3 +2 +1

In [

]:

3 2 *1

In [

]:

A

In [

]:

o°

In [

]:

@code native 1 + 2 + 3

In [

]:

@code native +(1,2,3)

In [

]:

3/2

In [

]:

In [

]:

div (3, 2)

In [

]:

X

*

XN

In [

]:

y =
(10) (4) (x * y) + 3

Built-ln Mathematical Functions
sqrtorx/;

sin, cos,etc.
lcmand gecd

abs and sign

In [

]:

sqgrt (200)

In [

]:

N200

In [

]:

sin(pi/2)

In [

]:

cos (pi/2)

In [

]:

lem(100,5,20,40)

In [

]:

gcd (100, 5,20,40)

In [

]:

abs (10)

In [

]:

abs (-10)

In [

]:

sign (-10)

Built-In Mathematical Constants

e piorTm
* ¢
* goldenory (\varphi NOT \phi)

In [

]:

sin(m/2)

In [

]:

log(e)

In []:

User-Defined Functions

e Todefine afunctionin Julia, use the keyword function
= The function definition is ended with the keyword end
e Short functions can be defined like £ (x) = x * x
e Julia Functions support default values, named parameters, etc.

]:

function my first function(a,b,c)
a + b * c
end

In

In

In

my first function(1l, 2, 4)

my first function(1l,2,3.5)

my first function(l,4//5,4)

In

In

In

function defaults(a,b=10,c=20)
a + b + c
end

methods (defaults)

defaults (10)

In []: @code native defaults(10)

In [

]:

z (x)
z(10)

dx + 3

Lambda

e Julia supports anonymous functions through a syntax similar to Java

arguments -> function body

e | ambdas with multiple parameters should be wrapped up in a tuple

(a,b,c) -> function body

In [

]:

x = y=->10y
x(10)

In [

]:

map (x -> x*x ,

[1 2 3 4])

Arrays

e Arrays are one of the primary datatypes of Julia
= Created using []
» |ndexingstartsat 1
= Negative indexing is replaced with the end keyword
e All operators can be used on arrays as well
= Special functions like mean, median, etc exist for arrays

In

my array =
my arrayl[0]

[1 2 3 45 6]

In [

]:

my array[1]

In

my array[end]

In

my array[end-1]

In

my array = [1,2,3,4]
my array + 4

In [

]:

* 4
my array

In [

]:

Vmy array

In

]:

mean (my array)

Multi-Dimensional Arrays

e Tocreate a2 dimensional array in Julia
= Separate the elements by spaces
= Separate the rows by semicolons

[1 23 4; 56 7 8]

e Comma separated elements creates a column vector, space separated elements a
row vector

In [J: [1 2 3 4;
5 6 7 8]

In [

]:

[1 2 3 4;

56 7 8;

9 10 11 12]

In [

]:

[

12 3 4]

In [

]:

(1,2,3,4]

Dot Notation on Function Names

e Any function you write can automatically be applied element-wise to an array
e Just append adot . after the function name but before the parentheses

e Thisis faster than using map or a for loop most of the time

c = 123456
test = [1 81 90481 6 3]
f(x) = x + c

In [

]:

@time map (f, test)

In [

]:

@time test + c

In

In

In

In

@time f. (test) #0nly works in Julia 0.5 +

two d = [1 8 1; 9 0 4; 8 1 6]
@time map (£, two d)

@time f. (two_d)

@time two d + c

o

Types

e Much of Julia's speed comes from Type system
= By Dynamically inferring types, the most optimized version (both in
algorithm and in assembly) can be called
e To specify a type for a variable, use the syntax
name: : TYPE

e To look at the built in type heirarchy, use the functions subtypes and super or
supertype in new versions of Julia

In

[

supertype (Number)

In

[

supertype (Float64)

In

subtypes (AbstractString)

In

subtypes (Number)

In [

]:

subtypes (Any)

In

function typed (x)
x ~ 3
end

function typed(x::Integer)
x ~ 3
end

In [

]:

@time typed(10.0)

In [

]:

@time typed(10)

In []: ## From https://en.wikibooks.org/wiki/Introducing Julia/Types
function tl1 (n)

s =0

for i in 1:n
s += s/1i

end

end

In []: ## From https://en.wikibooks.org/wiki/Introducing Julia/Types
function t2 (n)
s = 0.0
for 1 in 1:n
s += s/i
end
end

In [

]:

@time t1(10000000)

In [

]:

@time t2(10000000)

User Defined Types

e User defined types are just structs, similar to typedef
= The functions that operate on them will be written separately, like in R
= The constructor needs to have the same name as the type, and should
call new() at the end,

struct name # (type in older versions)
memberl: :typel
member?2: :type?2

end

e These user defined types can then be used to make new methods or overload
existing ones

In []1: type TIME #struct TIME in Julia > 0.5
hour::Integer
minute::Integer
end

In []: x = TIME(10,30)

In [

]:

x.hour

Overloading Methods

e Now that we know about types, we can overload existing functions like +
e Define a function as you normally would, using the appropriate function name
= +jsproperly knownasBase. : +

e Specify your specific types as the parameters

In

importall Base.Operators

function Base.:+(a::TIME, b::TIME) #New style is just Base.:+

TIME (a.hour + b.hour,
end

a.minute + b.minute)

In [

]:

x + TIME(11,30)

Strings

e While Julia was concieved as a numerical computation langauge, processing
strings is an important part of any language
e Strings must be delimited using double quotes
= Single quotes indicate a character, which is a different data type

e Numerous string functions are available in the base class, including regular
expression support

= The concatentation operatoris * NOT +
= Strings can be accessed like arrays

In

string = "Hello"
uni = "HeloB"
println (typeof (string)

4

4

typeof (uni))

In []: string * uni

In [

]:

string ~ 3

In

]:

another="Hello is $string and $uni"”

For Loops

e For loops must be ended with the keyword end
e For loops always use the in keyword

= To make a count style loop, use the array creation shortcut of
start:step:end

]:

for x in [1 2 3 4 5]
println (x)
end

]:

for x in 1:1:5
println (x)
end

]:

for x in 1:5
println (x)
end

Parallel For Loops

e The @parallel macro turns any loop into a parallel loop
= Datais not shared between iterations of the loop by default
o Candeclare variables as shared
= The @parallel macro can take one argument, which will be the reduce
function

In [

In [

In [

]:

]:

]:

nworkers ()

addprocs (4)

nworkers ()

In

]:

a = SharedArray{Float64d} (10)
@parallel for i = 1:10

print (i)

ali] = 1
end

print (a)

In

]:

a = SharedArray{Float64d} (10)
@sync @parallel for i = 1:10
print (i)
ali] = 1
end

print (a)

In

a = SharedArray{Float64} (10)
fut = @parallel for i = 1:10
print (i)
ali] = 1
end
for x in fut
fetch (x)
end
print (a)

@time nheads = @parallel (+) for i
Int (rand (Bool))
end

nheads old = 0
@time for i = 1:200000000

nheads old += Int (rand(Bool))
end

1:200000000

If Statement

e |f statements use the keywords i f,elseif,else,and end
e The end keyword goes at the end of the entire block
e Thereis no special braces, colons, parentheses or anything else

In

]:

x =20 + 4
if x > 50
println ("GOOD"™)
elseif x < 20
println ("BAD")
else
println ("OK")
end

In [

]:

(2+3) : :Floato4d

Modules

e Julia has a robust module system, and packages can be seend at
https://pkg.julialang.org/
e Toinstall new packages use the command Pkg.add (PACKAGENAME)

e Touse the newly installed package use
= yusing - Places functions in global namespace

= import - Need to access using module name
e Youcan alsoinclude afiledirectly using include (),and require ()

https://pkg.julialang.org/

