
PHP V

Package Managers

The PHP community has largely relied on two package manager/ package
repositories

PEAR
Composer/Packagist

PEAR is the PHP Extension and Appplication repository
Was the system of choice for many years
Not commonly reccomended anymore

Composer

 has become the PHP package manager of choice for most developers
Is a PHP script itself, run from the command line

composer.phar is a PHP archive of executable code
Con�gured using JSON �le composer.json
Dependencies installed using php composer.phar install

Composer

https://getcomposer.org/

Composer.json

The composer.json �le is an object that uses many keys to speci�cy the
con�guration
For pure package management, the most important key is require
The value of require is an object whose keys are packages and whose values are
package versions

{

 'require':{

 "ezyang/htmlpurifier" : ">0.0"

 }

}

Using Packages Installed with Composer

Packages places all libraries installed inside the vendor directory in whatever
directory it was run from

Each PHP project has its own composer.json
When installing packages, composer updates its own autoloader script, so to
include all libraries, just add
require_once __DIR__ . '/vendor/autoload.php';

Packagist

The default repository used by Composer is
Other repos can be speci�ed by using the repository key in composer.json
New packages are published by using composer.json with some additional keys
A list of popular libraries can be found at

Packagist

https://phptrends.com/

https://packagist.org/
https://phptrends.com/

In []:

In []:

require_once __DIR__ . '/vendor/autoload.php';

$faker = Faker\Factory::create();

echo $faker->name;

echo $faker->address;

echo $faker->text;

Frameworks

Writing large webapps requires a lot of boilerplate code
Templating Engines
Making Database Requests
Organizing Codebases
Security
Processing Forms

Popular Frameworks

As the community matures and best practices emerge, a few frameworks have
bubbled to the top

CodeIgniter
CakePHP
Laravel

CodeIgniter Example
$this->load->database();

$query = $this->db->get('table_name');

foreach ($query->result() as $row)

{

 echo $row->title;

}

Debugging

Log�les
The �rst place you normally look for an error are the log �les created by
the PHP module of your webserver
There is one PHP module for everyone on GL, so for security reasons
you can't access this

Sending Errors to Client
Explicitly Printing
Telling PHP To report them

Var_Dump

var_dump is a very similar command to print_r, but contains more information
good for debugging

The object type is part of the output
The length of arrays are output

In []:

In []:

$obj = json_decode('{"a":1,"b":2,"c":3,"d":4,"e":5}');

echo print_r($obj,true);

var_dump($obj)

Printing Errors

By default, any errors encountered during the execution of a PHP script are only
written to the log, and not the screen

This is for security reasons
To force error reporting use the function ini_set

To control the level of errors that get reported, use the error_reporting
function

`

 ini_set("display_errors", 1);

error_reporting(E_ALL);

Available to view at
https://www.csee.umbc.edu/~bwilk1/433/php_examples/errors_on.php

<?php

 error_reporting(E_ALL);

 ini_set("display_errors", 1);

 $aliens_title_by_release_year[1979] = "Alien"; # good

 $aliens_title_by_release_year[1986] = "Aliens"; # good

 $aliens_title_by_release_year[1992] = "Alien 3"; # eh...

 $aliens_title_by_release_year[1997] = "Alien: Resurrection"; # avoid

?>

 <h1>Warnings & Errors On</h1>

<?

 foreach(array_keys($aliens_title_by_release_year) as $key) {

 print "$key: $aliens_title_by_relaese_year[$key]";

 }

?>

https://www.csee.umbc.edu/~bwilk1/433/php_examples/errors_on.php

Security

PHP is one of, if not the most popular point to start a cyberattack
PHP provides an interface between strangers and your server
It is imperative you consider the security implications of your PHP script, not just
for you, but for other users of your page

Password Hashing

PHP is commonly used to build log in systems
Storing users passwords is a serious responsibility
Using frameworks is one way to prevent mistakes
The other is to use the built in functions password_hash and
password_verify

Requires PHP 5.5+ aka not GL

In []: $my_password = 'password1234';

echo password_hash($my_password,PASSWORD_DEFAULT);

echo password_hash($my_password,PASSWORD_DEFAULT);

In []: $hash1 = password_hash($my_password,PASSWORD_DEFAULT);

echo password_verify($my_password,$hash1);

echo password_verify('password',$hash1);

Input Validation

A major vulerability is also one of PHP's greatest strengths
Accepting user input

We will talk about a few very speci�c issues in a bit, but in general you should
always verify your input to be what you expect it to be
PHP has two methods to help with this

�lter_var
�lter_input

Filtering

Input �ltering is checking if the input given matches the expected format
The two methods mentioned before use constant to check the input

This is only a �rst pass, more speci�c �ltering should be done based on
your app needs

Common �lters
FILTER_VALIDATE_EMAIL
FILTER_VALIDATE_URL
FILTER_VALIDATE_IP

In []:

In []:

$my_email = "bryan.wilkinson@umbc.edu";

filter_var($my_email,FILTER_VALIDATE_EMAIL);

$my_bad_email = "<script>doEvil();</script>@umbc.edu";

filter_var($my_bad_email,FILTER_VALIDATE_EMAIL);

Sanitizing

An alternative to �ltering is to sanatize your input
This removes harmful characters from the input

It is considered less secure, because if an attacker knows this is
happening, they can try an be clever to get around it

Better to reject if you can

Sanitizing

Santitizing uses the same functions, but with different constants
Common constants for sanitization are

FILTER_SANITIZE_EMAIL
FILTER_SANITIZE_URL
FILTER_SANITIZE_STRING

In []: $my_email = "bryan.wilkinson@umbc.edu";

$my_bad_email = "&34;script>doEvil();</script>@umbc.edu";

echo filter_var($my_email,FILTER_SANITIZE_EMAIL);

echo filter_var($my_bad_email,FILTER_SANITIZE_EMAIL);

Network Request Security

Another common vulerability is to trust encrpyted data, which is still vulernable
to man-in-the-middle attacks
To prevent against this, you should explicity tell PHP to ensure that the response
of the network request is from the server requested
$context = stream_context_create(array('ssl' => array('verify_peer' => T

RUE)));

$body = file_get_contents('https://api.example.com/search?q=sphinx', fal

se, $context);

In []: $context = stream_context_create(

array('ssl' => array('verify_peer' => TRUE)));

$body = file_get_contents('https://www.umbc.edu', false, $context);

SQL Injections

We didn't cover using PHP with databases in this course, but it is a very common
use of them
Using user input directly in an SQL query is a very bad idea

Can leak data
Can leak information about your database set up

Steps to reduce
Valdiate data �rst
Escape input or use prepared statements

Example from https://php.earth/docs/security/sql-injection

$query = "SELECT username, email FROM users WHERE id = ?";

$stmt = $mysqli->stmt_init();

if ($stmt->prepare($query)) {

 $stmt->bind_param("i", $id);

 $stmt->execute();

 $result = $stmt->get_result();

 while ($row = $result->fetch_array(MYSQLI_NUM)) {

 printf ("%s (%s)\n", $row[0], $row[1]);

 }

}

https://php.earth/docs/security/sql-injection

Code Injection

Another danger is someone including their own PHP into your code
This can happen when:

eval is used
A user input is passed to include or require
A �le name is passed to open

Preventing Code Injection

Don't use eval
If you are doing dynamic includes, use a switch statement or something, and don't
directly just use the variable
Validate your �lenames, and don't use a �lename directly

Directory Traversal

Another danger about �les and �le names is directory traversal
A malicous user could send the �le name / or ../ and get somewehre they
shouldn't

Explicity check for �lenames start with this
Run standard �ltering and sanitation on �le names
Don't use the user supplied �le names!

Cross Site Scripting

A major danger to users of your site is cross-site scripting
If your database is comporimised, it could be placed there
It could be done through public content through a form like comments

Escape escape escape
If you are sending user generated content back to the client, use

 libraryHTMLPurify

http://htmlpurifier.org/

In []: $untrustedHtml = "<script><iframe src=''></script>Hello";

$config = HTMLPurifier_Config::createDefault();

$config->set('HTML.Allowed', 'p,b,a[href],i'); // basic formatting and links

$sanitiser = new HTMLPurifier($config);

$output = $sanitiser->purify($untrustedHtml);

