
JavaScript IV

HTTP Statelessness

HTTP is a stateless protocol
After a request to a webserver is made, and the page returned, no state
is tracked

No way to know which users
Have visited your site before
Are in the middle of some multi-page process

Cookies

A Cookie is a single key-value pair that is stored locally on the users computer
Exact location dependent on browser

Two types
Session: Are deleted when the browser is closed
Persistent: Are deleted on the de�ned expiration date

Cookies

Cookies can be used and modi�ed by
JavaScript
Server Side Languages (PHP, Python, Java, Perl, etc.)

Cookies were meant to hold small pieces of information
Cookies are part of HTTP itself, and are sent to a website everytime you
make a request as part of the headers

Cookies in JavaScript

Cookies in JavaScript are set and read using the cookie property of the
document object
From the JavaScript perspective, cookies can only hold one string of text

You can set the cookie property multiple times, it won't be overwritten
Instead it is appended to

When the cookie property is read, all cokies for a site are returned as a
string

Seperated by ';'

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <p id="cookieValue"></p>

 <script>

 document.cookie="course=433";

 document.cookie="department=CMSC";

 document.getElementById("cookieValue").innerHTML=

 document.cookie

 </script>

 </body>

</html>

Cookie Attributes

There are numerous attributes of cookies that control how long they persist, or
when they can be used

All are set when setting the cookie, separated by ';'

Common attributes
domain : What domain the cookie is valid for
expires: When the cookie should be deleted
max-age: How long the cookie should persist in seconds
secure: Prohibits cookies from being sent without HTTPS

document.cookie = "name=value; attribute1=att_value1; attribute2

=att_value2"

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <p id="cookieValue2"></p>

 <script>

 var expire = new Date('Wed, 31 Dec 2017 23:59:59 EST');

 document.cookie="course=433; expires=" + expire.toUTCString();

 document.cookie="department=CMSC";

 document.getElementById("cookieValue2").innerHTML=document.cookie

 </script>

 </body>

</html>

Cookies and Privacy

Cookies have long be overused and abused
Don't store too much data in them, it slows down the connection
Don't store sensitive information in them

Tracking of users may be considered in infringement on their privacy
Many browsers support a Do Not Track header, its up to the servers to
respect this
EU members must display a disclaimer that they are being used

Modern Storage APIs

All modern browsers support a newer, simpler API to store things locally, known
as the Web Storage API

Makes reading and writing values much easier
Doesn't send on every HTTP request

More secure
Provides storage events that all tabs/pages can react to

sessionStorage and localStorage

Both Storage objects are members of the window object
window is the default object, so you will often see sessionStorage
rather than window.sessionStorage

sessionStorage is cleared when a new page is navigated to
localStorage has no set expiration date
Easy API to get and set key/value pairs

setItem(name,key)

getItem(name,key)

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <button id="store">Click Here to Store Things</button>

 <p id="storageValue"></p>

 <script>

 document.getElementById("store").addEventListener('click',

 function(){

 window.sessionStorage.setItem('building',"Sherman");

 window.localStorage.setItem('room','015')

 });

 document.getElementById('storageValue').innerHTML =

 window.sessionStorage.getItem("building") + " " +

 window.localStorage.getItem("room");

 </script>

 </body>

</html>

Inspecting Local Storage in a Browser (Chrome)

AJAX

AJAX was an acronym for Asynchronous Javascript And XML
No one really uses XML anymore

JavaScript allowed the user to interact with what was on the page
What about getting new data after the page loaded
Prediction of Text in search
Allows to request data from multiple sources on one webpage

Google Maps
Yelp
Twitter

Brief History of AJAX

Was �rst implemented in Internet Explorer
Other browers quickly adopted it, but changed the method names
Was based on XML (eXtensible Markup Language) due to heavy use in businuess
at the time
Today is standardized and XML is hardly used anymore

XMLHTTPRequest

XMLHTTPRequest is the object used to initiate and interact with the request

After we have the object, open is used to set where the data is from and how to
get it

For security reasons, this location needs to be part of the same website
send is used to add parameters and send the request to the URL given in the
open parameter

var theRequest = new XMLHttpRequest();

theRequest.open('METHOD','location',Asynchronous?)

theRequest.send(ParametersObject)

Making the Request (GET)

The method is the string "GET"
A GET request requires all parameters to be passed as part of the URL

Sent in the location parameter of the open method
There are no additional parameters to get, so sent is passed null

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="zip">

 <button id="lookup">Lookup</button>

 <p></p>

 <script>

 document.getElementById("lookup").addEventListener('click',

 function(){

 var request = new XMLHttpRequest();

 var zip = document.getElementById('zip').value;

 request.open('GET', './lookup.php?zip=' + zip);

 request.send(null);

 });

 </script>

 </body>

</html>

Listening for a Response

XMLHTTPRequest.send() doesn't return anything
To get the response, we must attach an event listener to the XHR object

Rather than use addEventListner, set the property
onreadystatechange

Set equal to a function that takes no parameters

The Response Object

The reponse object holds all the information sent back from the server
Is the same as the request object actually

onreadystatechange actually �res multiple times during the request, but we
only care about it when its done usually

response.readyState holds where in the process the request is
4 corrisponds to being done

response.status holds the HTTP status of the request, it should be 200 if
successful
response.responseText holds the content returned from the server

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <h3>Respose Object Stages</h3>

 <p>Response State: <p>

 <input type="text" id="zip">

 <button id="open">Open</button>

 <button id="lookup2">Lookup</button>

 <p id="city"></p>

 <script>

 var request = new XMLHttpRequest();

 request.onreadystatechange = function(){

 document.getElementById("state").innerHTML = document.getElement

ById("state").innerHTML + " " + request.readyState;

 };

 document.getElementById("open").addEventListener('click',function(){

 var zip = document.getElementById('zip').value;

 request.open('GET', 'https://www.csee.umbc.edu/~bwilk1/lookup.php?

zip=' + zip);

 });

 document.getElementById("lookup2").addEventListener('click',

 function(){

 request.send(null);

 });

 </script>

 </body>

</html>

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="zip3">

 <button id="lookup3">Lookup</button>

 <p id="city3"></p>

 <script>

 document.getElementById("lookup3").addEventListener('click',

 function(){

 var request = new XMLHttpRequest();

 var zip = document.getElementById('zip3').value;

 request.open('GET', 'https://www.csee.umbc.edu/~bwilk1/lookup.php?

zip=' + zip);

 request.onreadystatechange = function(){

 if(request.readyState == 4){

 if(request.status == 200){

 var info = request.responseText.split(":");

 document.getElementById("city3").innerHTML = info[0] +

 "," + info[1]

 }

 }

 };

 request.send(null);

 });

 </script>

 </body>

</html>

Get Example

Use the PokeAPI to allow someone to �nd out information about a Pokemon by
providing the pokedex number

http://pokeapi.co/api/v2/pokemon/NUMBER

http://pokeapi.co/api/v2/pokemon/NUMBER

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="dex">

 <button id="find">Who's That Pokemon?!</button>

 <p id="results"></p>

 <script>

 </script>

 </body>

</html>

In []:

Get Practice

Write a script to get the appropriate lecture given a number below, and display the conte
the user

The format of the lecture URLS are all
https://www.csee.umbc.edu/courses/undergraduate/433/spring18/

lec=NUM

%%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="number">

 <button id="find">Get Lecture</button>

 <p id="title"></p>

 <script>

 </script>

 </body>

</html>

Making the Request (POST)

A post request is made very similar to a get request
The method passed to open should be "POST"

The data must be sent as the paramter to send
Should be formatted like it was being sent with "GET"

name1=val1&name2=val2...

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="zip">

 <button id="lookup">Lookup</button>

 <p id="city"></p>

 <script>

 document.getElementById("lookup").addEventListener('click',

 function(){

 var request = new XMLHttpRequest();

 var zip = document.getElementById('zip').value;

 request.open('POST', './lookup.php");

 request.onreadystatechange = function(){

 if(request.readyState == 4){

 if(request.status == 200){

 var info = request.responseText.split(":");

 document.getElementById("city").innerHTML = info[0] +

 "," + info[1]

 }

 }

 };

 request.send("zip=" + zip);

 });

 </script>

 </body>

</html>

POST Example

Send a POST request to https://geocode.xyz to perform geoparsing
Set the values of the scantext parameter

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="geo">

 <button id="geo_lookup">Lookup</button>

 <p id="coded"></p>

 <script>

 document.getElementById("geo_lookup").addEventListener('click',

 function(){

 var request = new XMLHttpRequest();

 request.setRequestHeader("Content-type", "application/x-www-form-u

rlencoded");

 request.onreadystatechange = function(){

 };

 });

 </script>

 </body>

</html>

POST Practice

Use the geocode.xyz service to locate an IP
The needed �elds are locate which should hold the IP

In []: %%html

<!DOCTYPE>

<html>

 <head>

 </head>

 <body>

 <input type="text" id="geo">

 <button id="geo_lookup">Lookup</button>

 <p id="coded"></p>

 <script>

 </script>

 </body>

</html>

JSON

Sending one piece of text back and forth doesn't require much parsing
Larger data needs to be sent as a parsable string

Originally, XML was used for this purpose, but that is annoying
JSON stands for JavaScriptObjectNotation

Uses {} for objects, and [] for arrays
The major difference between this and actual JavaScript code is that
keys must be quoted
{

"my_key": 10,

"an_array":[1,2,3,4]

}

JSON Example

Write the JSON that would be generated from an object declared as:
let apple = new Object();

apple.color = 'red';

apple['name'] = 'gala';

apple.sizes = [1 , 2, 1, .5];

JSON Practice

Write the JSON that would be generated from an object declared as:
let orange = new Array();

orange.push(1)

orange.push('2')

orange.push({pi: 3.14, e: 2.71});

Converting To and From JSON

When JSON was �rst introdcued, parsing was done by hand, or by running the
code through eval

Running the code through eval is a very bad idea and a major security
risk

Eventually some standard libriaries started to pop up to handle this task for us
Now it is part of the JavaScript language, using the JSON object

JSON.parse takes a JSON string, and returns the corrisponding JS
object
JSON.stringify takes a JS object and returns the corresponding
JSON string

In []: %%script node

var today = new Date();

console.log(JSON.stringify(today))

console.log(JSON.parse(JSON.stringify(today)))

AJAX + JSON

By combining AJAX and JSON we can make very large complex web applications
Most standard APIs return JSON, or at least have it as an option

AJAX Saftey

To prevent malicious code execution, most AJAX calls can only be made to pages
on the same server

This is known as the same-origin policy
This can be overridden, but is a bit complex for the purposes of this course
Never use eval, this can execute code from anywhere

Parse using JSON.parse

A note about the future

Two new capabilities are beginning to be implemented, but aren't widely
supported
The Fetch API is essentially a replacement for XHR objects

XHR was creating a bit organically, the fetch API aims to rebuild it from
the ground up with better design
Has seperate Request and Response objects
Built around a paradigm known as promises

Server Sent Events
Rather than constanly polling a server, let the server initiate sending
events
Need to tell the server the page is willing to receive events, after that
server initiates

