
JavaScript I

Introduction

JavaScript traditionally runs in an interpreter that is part of a browsers
Often called a JavaScript engine

Was originally designed to add interactive elements to HTML pages
First released in 1995 as part of Netscape Navigator

Forms the backbone of modern web development
Uses multiple paradigms, including object oriented and functional aspects

Background

Javascript is not related to Java in anyway other than

trying to get some free publicity

Background (cont'd)

Now Javascript is a standarized language that is overseen by European Computer
Manufacturers Association

The of�cial term for the language is ECMAScript
The 6th version of the standard was �nalized in June, 2015
The is available for browsing

Javascript has moved beyond the web for use in databases and desktop programs.
500+ page standard

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

JavaScript Capabilities

Add text dynamically to an HTML page
React to events that occur on an HTML page
Basic validation (but not the only validation!)
Detect browser and other data about the environment
Asynchronous communication

JavaScript Restrictions

(On the Web)

You cannot read or write to the �le system in general
You cannot interact with other processes on the system
You can't keep your code private

JavaScript Engines

Each Major browser uses their own JavaScript engine (interpreter)
There are differences not only in what is supported, but the speed of
various functions

The Engines
Spider Monkey

The original engine, tracing all the way back to Netscape
Navigator
Now developed by Mozilla
Used in all Mozilla products, as well as Adobe Acrobat and
Mongo DB

The Engines (Continued)

V8
Developed by the Chromium team at Google
Used in Chrome, Opera, and Vivaldi browsers
Also used in Couchbase and node.js

JavaScriptCore
Developed by the WebKit team
Used in Safari (known as Nitro)

Chakra(Core)
Developed by Microsoft
Used in Internet Explorer and Edge

Slightly different engines in each

Placing JavaScript in a Web Page

JavaScript is embedded in a web page using the <script> tags
You used to have to specify the type attribute, but HTML5 assumes
JavaScript

The JavaScript can be
Placed between the script tags
Stored in an external �le, and speci�ed using the src attribute

<script>

 JS GOES HERE

</script>

<script src="file_name.js"></script>

The noscript Tag

Not all browsers will run JavaScript
The user may have disabled it
May be text-based or a screen reader

Although screen readers are getting more advanced
To handle these situtations gracefully, use the noscript tag

Content in noscript is only displayed if running JavaScript is not
possible

Developing Javascript Code

NodeJS
Web Browser

Web Console (Firefox)
Javascript Console (Chrome)
Show Error Console (Safari, after enabling developer menu)
Console Tool (IE 11+, Edge)

Variables & Scope

Variables should always be declared using the keywords var, let, or const
Not necessary always, but easier than trying to remember when to use it
and when not to
In strict mode is always necessary

The scope of a variable is the function it was declared in
Making a new function is used to be only way to make a new scope
We can use the keyword let to de�ne the scope inside a block (ES2015)

In []: var a = 1

var _a = 1

var $a = 1

//var 1a = 1

In []: var a = 5

if(true)

 {

 var b = 6

 }

a + b

In []: var c = 6

function f() {

 var d = 11

}

c + d

In []: var e = 5

if(true)

 {

 let g = 6

 }

e + g

Data Types

Javascript is a dynamically typed language
Javascript provides 7 data types

Unde�ned
Null
Boolean
String
Symbol
Number
Object

Number

Only one type for both integers and �oats
Also can hold one of 3 special values

-In�nity
In�nity
NaN

Operators

In []:

In []:

In []:

In []:

4 + 1

4 - 1

4 * 1

4 / -2

In []:

In []:

In []:

In []:

In []:

4 % -2

4/0

Infinity / Infinity

Math.sqrt(-1)

0/0

In []:

In []:

var a = 1

a += 1

a

var b = 20

b++

b

String

Strings in Javascript can be delimited by either single or dobule quotes
A speci�c character at position i in a string can be access through bracket notation
[i]
The concatenation operator is +

In []:

In []:

In []:

"abc"[0]

"abc" + "abc"

'Someone said "this" '

String Methods

charAt(i) allows you to index using a method rather than []
concat(s1,s2...) allows multiple strings to be concatenated in one call
indexOf(string)/lastIndexOf(string) �nds the �rst or last occurrence
of the argument in the string
split(sep) returns an array, the result of splitting the string on the separator
passed in
length is a property that holds the number of characters in a string

In []:

In []:

In []:

In []:

"abc".charAt(0)

"abc".concat("def","ghi",'jkl')

"abba".indexOf('b')

"abba".lastIndexOf('b')

In []:

In []:

In []:

"a,b,c,d".split(",")

var x = "a,,b,c,,d".split(",,")

x

"abc".length

Boolean

The boolean values in Javascript are true and false
0, NaN and "" are coerced to false

The operators are
&& (and)
|| (or)
! (not)

To test equality there are two operators
== Tests the value only
=== Tests the value and the type

In []:

In []:

In []:

In []:

In []:

(1 > 0) && (1 < 10)

'1' == 1

'1' === 1

'1' != 1

'1' !== 1

Unde�ned & Null

A variable in Javascript that is uninitialized has a value of unde�ned
null is used in similar situations
Testing a variable equal to (==) null actually test null or unde�ned

In []: var undeclared

console.log(undeclared === undefined)

console.log(undeclared === null)

console.log(undeclared == null)

console.log(null == false)

console.log("abc"[200])

Arrays

Arrays in Javascript are a special type of object
They can be initialized by

listing the elements between square brackets
Calling the array constructor Array() with

The length of the array
The elements of the array

They are indexed using []

In []: var arr = [1,2,3,4,5,6]

console.log(arr)

console.log(arr[0])

var arr2 = Array(10)

console.log(arr2)

console.log(arr2[0])

var arr3 = Array(10,9,8,7,6)

console.log(arr3)

console.log(arr3[0])

console.log(arr3[-1])

Array Methods

concat(a1,a2,a3) Appends several arrays together into one array
join(string) Returns a string, with each element joined by a string
pop/push(el) Remove or add an element at the end of the array
shift/unshift(el) Remove or add an element at the front of the array
reverse() Returns array in reverse order
sort(function) Returns the array, sorted by a function

In []:

In []:

In []:

var my_array = Array(1,2,3,4)

my_array.concat([1,2,3,4],[1,2,3,4])

my_array.join(",")

my_array.join("...")

In []: var my_array2 = Array(1,2,3,4,5)

my_array2.pop()

console.log(my_array2)

my_array2.push("Elephant")

console.log(my_array2)

In []: var my_array3 = Array(10,9,8,7,6,5)

console.log(my_array3.shift())

console.log(my_array3)

my_array3.unshift("T-minus")

console.log(my_array3)

Type Coercion

When dealing with two different data types, Javascript will prefer to attempt to
cast one of the types rather than throw an error

This is known as type coercion
If type coercion fails, rather throw an error, NaN or unde�ned are usually
returned

In []:

In []:

In []:

2 - '20'

5 + Number('1')

5 + '1'

In []:

In []:

In []:

'1' + 2

'5' * 20

'5' * '5'

In []:

In []:

In []:

In []:

't' * 5

't' / null

null == 0

'8' / null

Conditionals & Looping

Javascript provides the following conditional statements
if
switch

And the following looping mechanisms
for
while
do-while
for-in
for-of

If

The if statement in Javascript is pretty straightforward

The parentheses are not necesary for a single line, but should always be used
if else looks like this:

if (condition) {

 doSomething

}

if (condition1){

}

else if(condition2){

}

else if(condition3){

}

else{

}

In []: var x = '0'

if(x < 0){

 console.log("Negative");

 }

//

/*

Note the triple equals

*/

else if(x === 0){

 console.log("Zero");

}

else{

 console.log("Positive");

}

Switch Statement

The syntax and mechanics of the swtich statement borrow heavily from other
languages
Cases are marked with case and default provides a catch all case
switch(toTest){

 case 1:

 case 2:

 doSomething

 break

 case "A":

 case "B":

 somethingElse

 break

 case "D":

 other

 break

 default:

 final

 break

 }

In []: switch('0'){

 case -1:

 console.log("Negative")

 break

 case 0:

 //case '0':

 console.log("Zero")

 break

 default:

 console.log("Positive")

 break

}

Looping

The for loop construct is similar to other languages you know

The while and do while syntax is also similar

for(var i = 0; i < 10; i++){

}

var i = 0

while(i < 10){

 i++

}

In []: for(let z = 0; z < 10; z++){

 console.log(z * z)

}

console.log(z)

In []: var q = 1

while(q < 10){

 q++

}

For-In and For-Of

The for in loop will loop over an objects keys
Order is not guaranteed to be maintained

The for of loop is new, and iterates directly over the values of an object
Order is maintained

In []: let to_loop = ['a','b','c',1,2,3]

for (i in to_loop){

 console.log(i, to_loop[i])

}

for (j of to_loop){

 console.log(j)

}

Functions

Functions in JavaScript are �rst class objects
They can be passed into and returned from other functions

This means closures are possible
To declare a function in JavaScript, the keyword is function
function name(param1, param2, ...){

}

Function Examples

In []:

In []:

In []:

In []:

square(10)

function square(x){

 return x*x

}

function counter(){

 var count = 0;

 return function(){

 count++

 return count

 }

}

var c = counter()

c() + 1

