
R

Objects, Statistics, and Packages



Objects in R

R supports three different types of objects, all declared and used in different ways
S3 objects
S4 objects
RC objects



S3 Objects

S3 objects are the simplest and most common type of object in R
Based of the design of objects in the third version of the S language

Came out in 1988
Switched from FORTRAN to C

Methods don't belong to objects, uses a form of object-oriented programming
known as generics



Creating an S3 Object

Any existing object can be converted into an S3 object
Use the structure function and assign the results to a variable
Use the assignment version of the class function to give an existing
variable a class attribute

Both of these methods create a single instance at a time



In [ ]: my_first_instance <- structure(1:5,class="specialVector") 

print(my_first_instance) 

print(str(my_first_instance)) 



In [ ]: my_second_instance <- list(a_member = 2, another= "A String") 

print(my_second_instance) 

 

class(my_second_instance) <- "listClass" 

print(str(my_second_instance)) 



S3 Constructor

An S3 constructor is one that simply hides the call to structure or class inside
of a function
By convention, it should have the same name as the class, although this isn't
strictly necessary
class_name <- function(parameters){ 

  structure(list(parameters),class="class_name") 

  } 



In [ ]: vehicle <- function(n_wheels,color){ 

    structure(list(m_n_wheels = n_wheels, m_color = color ), 

              class="vehicle") 

} 

 

myCar <- vehicle(4,'black') 

print(class(myCar)) 



Inheritance

The class attribute of an object cab actually be a vector
We can use this to simulate inheritance
In the previous examples, we are inheriting from the list class
child_class <- function(parameters) 

{ 

  self <- parent_class(parameters) 

  class(self) <- append("child_class",class(self)) 

  self 

} 



In [ ]: car <- function(color){ 

    self <- vehicle(4,color) 

    class(self) <- append("car", 

                          class(self)) 

    self 

} 

my_new_car <- car('black') 

print(class(my_new_car)) 



Methods

R uses a style of OOP known as generics
An object is passed to a function, which then acts on the object
By writing multiple different "versions" of the same function, we can
specify how the function should interact on a given object

Most functions we have seen so far are actually generics, ie
t(df) # actually t.data.frame(df) 



In [ ]: mm <- as.data.frame(matrix(1:20,ncol=4)) 

print(t(mm)) 

print(t.data.frame(mm)) 



In [ ]: print(t) 

 

print(t.data.frame) 



The Generic Function

The top level function must be created and follows a very standard format.
The UseMethod function denotes that this function should actually
dispatch to a more appropriate function, based on the object that was
passed in

The generic function for t might look like
t <- function(obj){ 

      UseMethod("t") 

  } 



User-De�ned Generics

Write a generic function with the name of the function you want
For each class you want to de�ne a different version of your function for, name it
as function_name.class_name

The generic function will use the class attribute of the function passed to
it to determine which to call

A function named function_name.default can be de�ned to be run in the
event no match is found



In [ ]: print(my_new_car) 

print.vehicle <- function(x) 

{ 

    "My vehicle is " % % x[['m_color']] % % "in color and  has" % % x$m_n_wheels %

 % "wheels." 

} 

print(my_new_car) 

#print.vehicle <- print.default 

rm(print.vehicle) 

print(my_new_car) 



In [ ]: makeNoise <- function(x){ 

    print(class(x)) 

    UseMethod("makeNoise") 

} 

 

makeNoise.vehicle <-function(x){ 

    "Generic Vehicle Noise" 

} 

 

makeNoise.car <- function(x){ 

    "BEEP BEEP" 

} 

 

makeNoise.default <- function(x){ 

    "You can't make a noise" 

    } 



In [ ]: print(makeNoise(myCar)) 

print(makeNoise(my_new_car)) 

print(makeNoise("Random String")) 



S3 Object Practice

Make an S3 class that represents a book you are reading
The book has a title, a number of pages, and the page you are currently
on, which is 1 to start with
Make a print method that prints a nice summary of the object
Make a read method, that takes in a number of pages, and increased the
page you are currently on by that ammount



S4 Classes

S4 is based on the object system from the 4th version of S, released in 1998
Not as commonly found, but some more complex libraries do make uses of it
Very similar to S3, but more formal

Classes must be initialized using the new function
The properties of the classes are part of the de�nition (called slots in 
R)
Inheritance is done through use of the contains keyword



Reference Classes

Reference classes are the newest object system in R
Released around 2010

Behave much more like traditional classes in other languages
Methods now belong to objects



Frequency

Counting the frequency of an element in R is done using the various table
functions

table returns a table object, which may be converted to a data frame
for easier querying

There is no limit to the number of variables in a cross-tabulation, although it is
rare to see something beyond a 2 or 3 way frequency

To print higher dimension frequencies, pass table to ftable



Frequency of Qualitative Data

Qualitative Data represents categories
No additional preprocessing needed with categorical data



In [ ]: strings <- c("Yes","Yes","No","Maybe","OK","Yes") 

print(table(strings)) 



In [ ]: library(vcd) 

head(Bundesliga) 



In [ ]: print(table(Bundesliga$HomeTeam)) 



In [ ]: homeGames <- table(Bundesliga$HomeTeam) 

print(head(homeGames[order(-homeGames)])) 



In [ ]: ## How do we get the total number of games played? 

away_games <- table(Bundesliga$AwayTeam) 

all_games <- away_games + homeGames 

print(head(all_games[order(-all_games)])) 



In [ ]: print(head(table(Bundesliga$HomeTeam,Bundesliga$AwayTeam))) 



Frequency of Quantitative Data

Quantitative Data requires preprocessing
The table function can only count things, it won't bin numbers for us

The cut function converts numeric data into factors
In addition to the vector to cut, we can either pass the number of bins, or
the bins themselves we want to use
The parameter right controls which side is open and which is closed



In [ ]: print(max(Bundesliga$HomeGoals)) 

FactorGoals <- cut(Bundesliga$HomeGoals,3,right=FALSE) 

print(table(FactorGoals)) 



In [ ]: print(head(table(Bundesliga$HomeTeam,FactorGoals))) 



In [ ]: goalsByTeam <- as.data.frame(table(Bundesliga$HomeTeam,FactorGoals)) 

print(head(goalsByTeam)) 



In [ ]: goalsByTeam <- as.data.frame.matrix(table(Bundesliga$HomeTeam,FactorGoals)) 

print(head(goalsByTeam)) 



In [ ]: print(order(-goalsByTeam[3])) 

print(head(goalsByTeam[order(-goalsByTeam[3]),])) 



Descriptive Statistics

Almost every basic statistical function is built-in in R
mean

median

sd - Standard Deviation
max

min



In [ ]: print(paste("Our dataset includes the years from", 

            min(Bundesliga$Year),"to",max(Bundesliga$Year))) 

print(mean(Bundesliga$AwayGoals)) 

print(mean(Bundesliga$HomeGoals)) 

print(sd(Bundesliga$AwayGoals)) 

print(sd(Bundesliga$HomeGoals)) 



In [ ]: sumAway <- summary(Bundesliga$AwayGoals) 

print(class(sumAway)) 

print(sumAway) 

print(summary(Bundesliga$HomeGoals)) 



Applying Over Axis

When applying a descriptive function like mean to a matrix or array, the default
option is to �atten it like a vector
To apply is only over rows or only over columns, we need to use another function

For mean, there is the special functions rowMeans and colMeans
In general, we can use the apply function, which applies a function over
an object across a given margin(sometimes called an axis)

In a matrix, 1 applies over the rows, and 2 applies over the
columns
apply(OBJECT,AXIS,FUNCTION) 



In [ ]: library(psych) 

#print(dim(iqitems)) 

#print(head(iqitems)) 

iqitems[is.na(iqitems)] <- 0 

print(mean(as.matrix(iqitems))) 



In [ ]: print(apply(iqitems,2,mean)) 



Correlation

There are many different kinds of correlation, three of the most common are
Pearson's r (most common)
Kendall's  (Rank-based correlation)
Spearman  (Rank-based correlation)

All are available in R using the cor method, and passing the corresponding string
to the method parameter

τ

ρ



In [ ]: print(cor(Bundesliga$HomeGoals, Bundesliga$AwayGoals,method="spearman")) 

 

## Not really useful because its comparing ranks, but this is how it is called 

print(cor(Bundesliga$HomeGoals, Bundesliga$AwayGoals,method="kendall")) 



PCA

R also comes built in with numerous exploratory data techniques
Principal Components Analysis (PCA) is a dimensional reduction technique that
attempts to �nd the most important components
The PCA function in R is named prcomp



In [ ]: pca <- prcomp(iqitems) 

print(pca$x) 



K-Means

Clustering is both a machine learning technique as well as a method of
exploratory analysis
The kmeans function produces k-clusters by using attributes of data

By default, it will use all attributes, if you don't want this, select a subset
before passing it to K-means

A kmeans object is returned



In [ ]: clusters <- kmeans(iqitems,10) 

print(clusters) 



In [ ]: print(str(clusters)) 

print(clusters$cluster) 



In [ ]: #clusters$cluster[clusters$cluster==2] 

head(iqitems[names(clusters$cluster[clusters$cluster==2]),]) 



Linear Regression

It is very common after some exploratory analysis to build a model in R
Linear regression in R is performed using the lm function
lm is the �rst function we are looking at that takes as an argument a formula
lm(formula, data = DATAFRAME) 



Formulas in R

A formula in R has the general form of

Variable names are not quoted, and are expected to refer to columns in the data
frame
If you think there is no interaction between the independent variables, combine
them using +
If you think there is interaction, or just want to allow it as a possibility, combine
them using *

dependent_var ~ independent_vars 



In [ ]: head(iris) 



In [ ]: model1 <- lm(Sepal.Length ~ Sepal.Width + Petal.Length, data = iris) 

summary(model1) 



In [ ]: model2 <- lm(Sepal.Length ~ Sepal.Width * Petal.Length, data = iris) 

summary(model2) 



In [ ]: model3 <- lm(Sepal.Length ~ Sepal.Width * Petal.Length * Species, data = iris) 

summary(model3) 



ANOVA

In the social sciences, a very common anaylsis is to determine which variable is
the most signi�gant

The most common way to doing this is Analysis of Variance (ANOVA)
ANOVA is actually a specialized version of a linear model, but we can call it
explicitly by using the function aov

If you already have a linear model, you can print the ANOVA by using the
function anova



In [ ]: model4 <- aov(Sepal.Length ~ Sepal.Width * Petal.Length * Species, 

              data = iris) 

print(summary(model4)) 



In [ ]: print(anova(model3)) 



Packages in R

Like most scripting languages, R has a very robust package ecosystem
To install a package in R, use the install.packages function, and pass the
name of the function you want to install
Once a package is installed, you can use it by calling
  library(PACKAGE_NAME) #No QUOTES



Package Documentation

Most major packages in R come with two forms of documentation
The manual, which contains the same information that can be accessed
through the ? operator
Vingettes, which is a more long form documentation, often written in the
style of an academic paper

Example
https://cran.r-project.org/web/packages/psych/psych.pdf
https://cran.r-project.org/web/packages/psych/vignettes/intro.pdf
https://cran.r-project.org/web/packages/psych/vignettes/overview.pdf

https://cran.r-project.org/web/packages/psych/psych.pdf
https://cran.r-project.org/web/packages/psych/vignettes/intro.pdf
https://cran.r-project.org/web/packages/psych/vignettes/overview.pdf


CRAN

So where do the packages come from when we perform install.packages?
By default the come from CRAN the Comprehensive R Archive Network

Most scripting languages have an equivalent, often named similarly
(CTAN, CPAN)

Other package repositories exist and can be used, but if you are using a popular
package, it is probably published on CRAN



Finding Pacakges

CRAN is great at hosting packages
Not great at helping you �nd packages

Numerous third party websites exist to help you �nd a package to accomplish
something

My personal favorite is https://crantastic.org/

https://crantastic.org/


TidyData

There are many ways to represent data in a data frame, and due to the history of
R, almost all of them are use
Recently there has been a push to create commonsense conventions, known as
having "Tidy Data"
Hadley Wickham (Major player in R and the tidy data movement) de�nes tidy data
as

Each variable is in a column.
Each observation is a row.
Each value is a cell.



TidyR

To promote and enable this, the package TidyR was released
It was spawned an entire family of packages, collectively known as the tidyverse

You can install just tidyR by using install.packages('tidyR')
The entire family can be installed with install.packages('tidyverse')

It contains many functions meant to manipulate data into a tidy form



The Pipe Operator

TidyR is commonly presented using the operator %>%, which comes from an
earlier package, magrittr

It is very similar to the pipe in bash, passing the output of one function as
the �rst argument to the next function
The following are eqiuvalent

apply(data,1,function) 

 

data %>% apply(1,function) 



Spreading

The spread function converts from long data to wide data
The syntax of the spread function is

Key is the column you want to use to form your new columns
Value is the column you want to use to �ll the cells

spread(data,key,value) 



In [ ]: library(DSR) 

long <- table2 

extra_wide_cases <- table4 

combined <- table5 



In [ ]: library(tidyr) 

print(as.data.frame(spread(long,?,?))) 



Gathering

Gathering is the opposite of spread
While it is uncommon to need this, it is possible someone made a data
frame where not every column is a variable, and you need to collapse
things a bit
gather(data, COLUMN_NAME1, COLUMN_NAME2, cols_to_gather) 



In [ ]: gathered_cases <- extra_wide_cases %>% gather("Year","Cases",2:3) 

print(gathered_cases) 



Separating and Uniting

Separating and Uniting allows us to create multiple columns from one, or bring
together columns that should never has been separated
separate(data,col_to_separate,new_columns) 

  unite(data,col_to_add, from_columns) 



In [ ]: print(combined) 

all_good <- combined %>% unite("year",?) %>% separate(?,?) 

print(all_good) 


