
Bash

Streams, Redirection, and Control Structures

Warm Up

Write a simple bash script that takes in a �le name as an argument, and does the
following:

Sorts that �le, and outputs the results to the screen
Paste that �le to another �le with the same name, but all o's replaced
with e's, and outputs it to the screen

In []: ./src/shell/demo1.sh data/noodles

#1=data/noodles

sort $1

paste $1 ${1//o/e}

Streams

STDIN
STDOUT
STDERR

Output Redirection

The greater than symbol (>), is used to redirect output
With no additional symbols, this redirects STDOUT to the speci�ed
location
1> also redirects STDOUT to the speci�ed location, but this form is not
normally used
2> redirects STDERR to the speci�ed location
&> redirects both STDOUT and STDERR to the same speci�ed location
>> appends STDOUT to the speci�ed �le

In []:

In []:

In []:

In []:

echo "Hello" > data/hello.txt

more data/hello.txt

echo "World" >> data/hello.txt

more data/hello.txt

In []:

In []:

In []:

gcc no_file.c

gcc no_file.c 2> data/gcc_errors.txt

more data/gcc_errors.txt

In []:

In []:

In []:

In []:

more src/python/out_and_err.py

./src/python/out_and_err.py > out 2> err

more out

more err

/dev/null

Unix has a special device that allows streams to be redirected to it but doesn't
save any of the redirected text
By redirecting to /dev/null you are throwing away that stream

Can be very useful to ignore errors, but many commands have a quiet
option built in

In []: gcc no_file 2>/dev/null

Input Redirection

The less than symbol (<) is used to redirect input to STDIN
Not many variations of this, but....
Two less than operators (<<) are used to create a here document, which
will have its own slide

In []: more src/python/simple.py

In []: ./src/python/simple.py < data/numbers.txt

Here Documents

A here document takes any string and allows it to be passed to a command as if it
were coming from STDIN

For commands that take multiple arguments, you may see the dash (-)
being used to explicitly indicate which argument should use STDIN
The << must be followed by a delimiter that is used to mark the end of
the HERE document
Using <<- will remove leading tabs, which can be useful for formatting
nice looking scripts

Here Strings

If all you want to redirect is a single line, you can use three less than symbols (<<<)
with no delimiter to indicate a here string

Any variables in a here string (or here document) are expanded before
being redirected

In []:

In []:

In []:

more data/numbers.txt

diff - data/numbers.txt <<EOF

40

1

2

3

EOF

diff - data/numbers.txt <<< "Hello"

Pipes

Many times the output of one command will function as the input to a second
command
Rather than redirect output to a tempoarary �le and then use that �le as input,
use the pipe command (|)

The STDERR stream can be redirection along with the STDOUT stream
using |&

In []:

In []:

ls -lh | wc -l

find ~/ -size +100M 2>/dev/null | head

Redirection and Pipe Practice

Combine the find and sort commands to produce a sorted list of all �les over
10M in a directory. Redirect the output to a �le called big_�les.txt

In []: find ~ -size +10M 2> /dev/null | sort > big_files.txt

more big_files.txt

Tee

The tee command takes in a stream as input, and outputs that stream both to
STDOUT and to the speci�ed �le

Used following a pipe operator

In [3]:

In [4]:

pip2 install -U asdfadsf |& tee scipy.log

more scipy.log

Collecting asdfadsf

 Could not find a version that satisfies the requirement asdfadsf (from versi

ons:)

No matching distribution found for asdfadsf

Collecting asdfadsf

 Could not find a version that satisfies the requirement asdfadsf (from versi

on

s:)

No matching distribution found for asdfadsf

Redirecting From Multiple Commands

Sometimes you may need to combine the output of multiple commands and pass
this on to a third or fourth command
You could use temporary �les, but process substitution �lls this need nicely
The syntax is <(command) (Known as process substitution)

This relies on certain operating system features, so isn't truly portable,
but can be assumed to be

In [6]: diff <(ls -lh .) <(ls -lh ~/Teaching/CMSC331)

1,22c1,13

< total 177M

< -rw-rw---- 1 bryan bryan 0 Feb 14 14:26 an_empty_file

< -rw-rw---- 1 bryan bryan 57K Feb 14 16:43 big_files.txt

< drwxr-x--- 2 bryan bryan 4.0K Feb 14 15:00 binder

< drwxr-x--- 2 bryan bryan 4.0K Feb 14 15:25 data

< -rwxr-x--- 1 bryan bryan 176M Sep 11 22:40 en.openfoodfacts.org.products.csv

< -rw-rw---- 1 bryan bryan 15 Feb 14 16:34 err

< -rwxrwx--- 1 bryan bryan 5.4K Feb 12 14:53 Git.ipynb

< drwxrwx--- 2 bryan bryan 4.0K Feb 10 13:17 helper_scripts

< drwxrwxr-x 2 bryan bryan 4.0K Feb 14 14:54 img

< -rwxr-x--- 1 bryan bryan 176K Nov 20 22:25 jupyter-php-installer.phar

< -rw-rw---- 1 bryan bryan 297K Feb 14 15:00 Lecture00.ipynb

< -rw-rw---- 1 bryan bryan 43K Feb 14 15:00 Lecture01.ipynb

< -rwxrwx--- 1 bryan bryan 43K Feb 12 14:53 Lecture02.ipynb

< -rwxrwx--- 1 bryan bryan 26K Feb 12 14:53 Lecture03.ipynb

< -rwxrwx--- 1 bryan bryan 71K Feb 14 15:06 Lecture04.ipynb

< -rw-rw---- 1 bryan bryan 28K Feb 14 16:46 Lecture05.ipynb

< -rw-rw---- 1 bryan bryan 15 Feb 14 16:34 out

< -rw-rw---- 1 bryan bryan 93 Feb 14 14:54 pngs

< -rw-rw---- 1 bryan bryan 149 Feb 14 16:45 scipy.log

< drwxr-x--- 6 bryan bryan 4.0K Feb 9 15:33 src

< lrwxrwxrwx 1 bryan bryan 26 Feb 12 15:26 upload -> ../teaching_scripts/upl

oad

> total 228K

> drwxrwx--- 2 bryan bryan 4.0K Feb 11 14:57 data

> drwxrwx--- 2 bryan bryan 4.0K Feb 11 19:51 img

> -rw-rw---- 1 bryan bryan 19K Feb 11 14:57 Lecture00.ipynb

> -rw-rw---- 1 bryan bryan 21K Feb 11 14:57 Lecture01.ipynb

> -rw-rw---- 1 bryan bryan 17K Feb 14 10:10 Lecture02.ipynb

> -rw-rw---- 1 bryan bryan 20K Feb 13 14:42 Lecture03.ipynb

> -rw-rw---- 1 bryan bryan 21K Feb 13 13:58 Lecture04.ipynb

In [7]:

In [8]:

In [9]:

head -n1 data/part1.tsv

head -n1 data/part2.csv

paste <(cut -f2 data/part1.tsv) <(cut -f2 data/part2.csv -d,)

1 Hydrogen H 1.008 14.01

H,1776

Hydrogen 1776

Helium 1895

Lithium 1817

Beryllium 1797

Boron 1808

Process Substitution Practice

Use process substitution to shuf�e two �les, concatenate them together, and
shuf�e the �nal results

data/numbers.txt - The list of numbers from before
data/letters.txt - A list of the letters of the alphabet, one per line

In [14]: cat <(shuf data/numbers.txt) <(shuf data/letters.txt) | shuf

2

40

1

3

z

xargs

Theoretically, you could pass the rm command a long list of directories to delete
When this list of arguments becomes arbitarilaly too long, rm may break
It is better to call rm on each of the directories in turn

xargs allows us to process a string, determine what the arguments are and how to
split them up, and how many times to call a command

Very useful for calling a command on the output of find

In [15]:

In [16]:

echo 1 2 3 4 | xargs ls

ls *.ipynb | xargs file

ls: cannot access '1': No such file or directory

ls: cannot access '2': No such file or directory

ls: cannot access '3': No such file or directory

ls: cannot access '4': No such file or directory

Git.ipynb: ASCII text

Lecture00.ipynb: UTF-8 Unicode text, with very long lines

Lecture01.ipynb: ASCII text, with very long lines

Lecture02.ipynb: UTF-8 Unicode text, with very long lines

Lecture03.ipynb: ASCII text, with very long lines

Lecture04.ipynb: UTF-8 Unicode text

Lecture05.ipynb: ASCII text

In [17]:

In [18]:

ls img/*.png | xargs -I{} convert {} {}.jpg

rm img/*.jpg

ls img/*.png > pngs

more pngs

xargs -IFILE convert FILE FILE.jpg < pngs

ls img/*.jpg

img/ajax-fig1.png

img/ajax-fig2.png

img/fb_messenger.png

img/fb_verify.png

img/registers.png

img/ajax-fig1.png.jpg img/fb_messenger.png.jpg img/registers.png.jpg

img/ajax-fig2.png.jpg img/fb_verify.png.jpg

If-Then-Else

The if block must end with fi
The then keyword is required in bash

For both elif and if
Must be on a different line or follow on the same line after a semicolon
if CONDITIONAL; then

#CODE

elif CONDITIONAL; then

#CODE

else

#CODE

fi

If-Then-Else

The if block must end with fi
The then keyword is required in bash

For both elif and if
Must be on a different line or follow on the same line after a semicolon
if CONDITIONAL

then

#CODE

elif CONDITIONAL

then

#CODE

else

#CODE

fi

Conditional Expression in Bash

Binary expressions in bash are evaluated
Using the test command
Using the [command (an alias of test)
Using the [[syntax

Results are stored as a return code
Not normally invoked on its own

Whitespace is very important

[and test vs [[

[and test are commands
[[is part of bash syntax

Allows for easier composition of conditionals using && and ||
Parentheses don't have to be escaped
Can do pattern matching and regular expressions as a conditional

Conditional Operators

Bash has three types of conditional operators
numeric operators
string operators
�le operators

You can always negate an comparison by using ! in front of it

Conditionals on Numbers

Equal: -eq
Not Equal: -ne
Greater Than: -gt
Greater Than or Equal: -ge
Less Than: -lt
Less Than or Equal: -le

In [21]:

In [22]:

if [1 -eq 7]; then

echo "What math are you doing?"

else

echo "One is not equal to 7"

fi

if [1 -ne 7]; then

echo "One is not equal to 7"

else

echo "What math are you doing?"

fi

One is not equal to 7

One is not equal to 7

In [23]:

In [24]:

In [27]:

if [! 1 -eq 7]; then

echo "What math are you doing?"

else

echo "One is not equal to 7"

fi

a=1

b=2

if [$a -lt $b]; then

echo "$a is smaller than $b"

else

echo "$b is smallter than $a"

fi

a=1

b=2

if [[$a -lt $b && $b -gt $a]]; then

echo "$a is smaller than $b"

else

echo "$b is smallter than $a"

fi

What math are you doing?

1 is smaller than 2

1 is smaller than 2

Conditionals on Strings

Equal: =
Not Equal: !=
Is Empty: -z
Is Not Empty: -n

In [28]:

In [29]:

In [30]:

string1="A string"

string2="Another string"

string3=

if [[$string1 = $string1]]; then

echo "The strings are the same"

fi

if [[-z $string3]]; then

echo "The string is empty"

fi

if [[-n $string2]]; then

echo "The string is not empty"

fi

The strings are the same

The string is empty

The string is not empty

Conditionals on Files

There are about 20 different tests that can be performed on a �le
man test shows them all

Some common ones are:
Existence: -e
Is a �le: -f
Is a directory: -d
Is readable/writable/executable: -r/-w/-x
Isn't empty: -s

In [31]:

In [32]:

more data/a_missing_file

if [[! -e 'a_missing_file']]; then

echo "Lets make a file" > data/a_missing_file

fi

more data/a_missing_file

more: stat of data/a_missing_file failed: No such file or directory

Lets make a file

In [33]: touch an_empty_file

if [[-e 'an_empty_file']]; then

echo "An empty file exists"

fi

if [[-s 'an_empty_file']]; then

echo "The file isn't empty"

fi

An empty file exists

In [34]: if [-f .]; then

echo "This directory isn't a file...something is messed up"

else

echo "All is right in the world"

fi

All is right in the world

If Statement Practice

Write a simple bash script that prints "Be Careful" if the argument passed to it is
A �le and
Writable and
Not empty

In [38]: a_name=data/numbers.txt

if [[-f $a_name && -w $a_name && -s $a_name]]; then

 echo "Be Careful"

fi

Be Careful

Switch Statements

Switch statements start with the keyword case and end with the keyword esac
Each clause is a pattern to match the expression against

The pattern in a clause ends with a right parentheses)
A clause must end with two semicolons (;;)

In [3]: expression="This is a String"

case $expression in

 0)

 echo "The variable is 0"

 ;;

 *ing)

 echo "The variable ends in ing"

 ;;

 *String)

 echo "The variable ends in String"

 ;;

 *)

 echo "This is the default"

 ;;

esac

The variable ends in ing

For Loops

Bash has traditionally used a foreach style loop (similar to Python)
Can loop over any type of array

Can also loop over �les
Both loops have the general syntax of
for EXPRESSION(S); do

CODE_GOES_HERE

done

Foreach Style Loop

The foreach style loop uses the setup of

list can be
a space seperated list
an expanded array
a shell-style regular expression (globbing)
the output of a command

for variable in list; do

In [4]:

In [5]:

for x in 1 2 3; do

 echo $x;

done

my_array=(1 2 3)

for y in ${my_array[@]}; do

 echo $y

done

1

2

3

1

2

3

In [6]: for f in *.ipynb; do

 wc -l $f

done

176 Git.ipynb

687 Lecture00.ipynb

1580 Lecture01.ipynb

1515 Lecture02.ipynb

937 Lecture03.ipynb

2853 Lecture04.ipynb

1580 Lecture05.ipynb

972 Lecture06.ipynb

For Loop Practice

Write a for loop that �nds the most common line in each �le in the data directory
Hint: use head to �nd most common

In [13]: for f in data/*; do

 sort $f | uniq -c | sort -n --key=2 | head -n1

done

 1 Aalborg Aalborg Airport AAL Denmark Europe

sort: write failed: 'standard output': Broken pipe

sort: write error

 1 Lets make a file

 1 1.2G Downloads

 1 1 Hydrogen

 1 0% Fat Greek Style Yogurt With Honey 04/08/2017 France 0.0

0.5 6.5 0.0 11.8 0.0 0.0 0.0 0.0 70.8661417323

0.0

 1 code url creator created_t created_datetime last_m

odified_t last_modified_datetime product_name generic_name quanti

ty packaging packaging_tags brands brands_tags categories

categories_tags categories_en origins origins_tags manufacturing_places

manufacturing_places_tags labels labels_tags labels_en emb_co

des emb_codes_tags first_packaging_code_geo cities cities_tags

purchase_places stores countries countries_tags countries_en ingred

ients_text allergens allergens_en traces traces_tags traces

_en serving_size no_nutriments additives_n additives additi

ves_tags additives_en ingredients_from_palm_oil_n ingredients_fr

om_palm_oil ingredients_from_palm_oil_tags ingredients_that_may_be_from_p

alm_oil_n ingredients_that_may_be_from_palm_oil ingredients_that_may_b

e_from_palm_oil_tags nutrition_grade_uk nutrition_grade_fr pnns_g

roups_1 pnns_groups_2 states states_tags states_en main_category

C-Style Loop

Support for the C-style loop is widespread in bash, but not all shell scripts
The syntax for the C-style loop is:

The variable isn't pre�xed with the dollar sign ($) inside the loop de�nition

for ((START ; END ; CHANGE)); do

In [14]: for ((x = 1; x < 4; x++)); do

 echo $x

done

1

2

3

In [15]: for ((x = 1; x < 4; x += 2)); do

 echo $x

done

1

3

seq Command

There are many other ways to do a c-style loop while using the traditional syntax
One option is the seq command, which returns a list of numbers
The syntax of the seq command is
seq START INCREASE? END

In [16]:

In [17]:

for i in $(seq 1 3); do

 echo $i

done

for i in $(seq 0 2 10); do

 echo $i

done

1

2

3

0

2

4

6

8

10

Brace Expansion

Another feature of bash that is often, but not exclusively used, with loops is brace
expansion
Bash will expand anything in braces into a list
Braces can take two forms:

or

{A_LIST,OF,OPTIONS}

{START..END}

In [18]: echo Lecture0{0,1,2,3,4,5}.ipynb | xargs ls -lh | cut -f6,7,8 -d' '

Feb 14 15:00

43K Feb 14

43K Feb 12

26K Feb 12

71K Feb 14

39K Feb 19

In [19]: for i in {0..5}; do

 ls -lh Lecture0$i.ipynb | cut -f6,7,8 -d' '

done

Feb 14 15:00

Feb 14 15:00

Feb 12 14:53

Feb 12 14:53

Feb 14 15:06

Feb 19 16:18

While Loops

While loops also use the do expression after the condition
The syntax for a while loop is
while CONDITION; do

 #CODE_HERE

done

In [20]: string='Some Characters'

while [[-n $string]]; do

 echo ${string:0:1}

 string=${string:1}

done

S

o

m

e

C

h

a

r

a

c

t

e

r

s

Until Loops

The until loop is almost identical to the while loop, but continues until the
statement is True
The until is still places at the top of the loop and checked before entering it
The syntax of until is
until CONDITIONAL; do

 #CODE GOES HERE

done

In [21]: string='Some Characters'

until [[-z $string]]; do

 echo ${string:0:1}

 string=${string:1}

done

S

o

m

e

C

h

a

r

a

c

t

e

r

s

