Bash

Streams, Redirection, and Control Structures

Warm Up

e Write a simple bash script that takes in a file name as an argument, and does the
following:
= Sorts that file, and outputs the results to the screen
= Paste that file to another file with the same name, but all o's replaced
with e's, and outputs it to the screen

In []: ./src/shell/demol.sh data/noodles
#1l=data/noodles

sort $1
paste $1 ${1//o/e}

Streams

e STDIN
e STDOUT
e STDERR

Output Redirection

e The greater than symbol (>), is used to redirect output

With no additional symbols, this redirects STDOUT to the specified
location

1> also redirects STDOUT to the specified location, but this form is not
normally used

2> redirects STDERR to the specified location

&> redirects both STDOUT and STDERR to the same specified location
>> appends STDOUT to the specified file

In

In

In

In

echo

more

echo

more

"Hello" > data/hello.txt

data/hello.txt

"World" >> data/hello.txt

data/hello.txt

In

In

In

gcc no_file.c

gcc no file.c 2> data/gcc _errors.txt

more data/gcc_errors.txt

In

In

In

In

more src/python/out and err.py

./src/python/out and err.py > out 2> err

more out

more err

/dev/null

e Unix has a special device that allows streams to be redirected to it but doesn't
save any of the redirected text
e By redirecting to /dev/null you are throwing away that stream
= Can be very useful to ignore errors, but many commands have a quiet
option builtin

In []1: gcc no file 2>/dev/null

Input Redirection

* Theless than symbol (<) is used to redirect input to STDIN
= Not many variations of this, but....
= Two less than operators (<<) are used to create a here document, which
will have its own slide

In

]:

more src/python/simple.py

In []: ./src/python/simple.py < data/numbers.txt

Here Documents

e A here document takes any string and allows it to be passed to a command as if it
were coming from STDIN

= For commands that take multiple arguments, you may see the dash (-)
being used to explicitly indicate which argument should use STDIN

= The << must be followed by a delimiter that is used to mark the end of
the HERE document

= Using <<-will remove leading tabs, which can be useful for formatting
nice looking scripts

Here Strings

e [f all you want to redirect is a single line, you can use three less than symbols (<<<)
with no delimiter to indicate a here string
= Any variablesin a here string (or here document) are expanded before
being redirected

In

In

In

more data/numbers.txt

diff - data/numbers.txt <<EOF

40
1

2

3
EOF

diff - data/numbers.txt <<<

"Hello"

Pipes

e Many times the output of one command will function as the input to a second
command
e Rather than redirect output to a tempoarary file and then use that file as input,
use the pipe command (|)
= The STDERR stream can be redirection along with the STDOUT stream
using |&

In []J: 1s -1h | wc -1

In []: find ~/ -size +100M 2>/dev/null | head

Redirection and Pipe Practice

e Combine the £ind and sort commands to produce a sorted list of all files over
10Min adirectory. Redirect the output to a file called big_files.txt

In []: find ~ -size +10M 2> /dev/null | sort > big files.txt
more big files.txt

Tee

e The tee command takes in a stream as input, and outputs that stream both to

STDOUT and to the specified file
= Used following a pipe operator

In

In

pip2 install -U asdfadsf |& tee scipy.log

Collecting asdfadsf
Could not find a version that satisfies the requirement asdfadsf

ons:)
No matching distribution found for asdfadsf

more scipy.log

Collecting asdfadsf
Could not find a version that satisfies the requirement asdfadsf
on
S:)
No matching distribution found for asdfadsf

(from versi

(from versi

Redirecting From Multiple Commands

e Sometimes you may need to combine the output of multiple commands and pass
this on to a third or fourth command
* You could use temporary files, but process substitution fills this need nicely
* The syntax is <(command) (Known as process substitution)
= This relies on certain operating system features, so isn't truly portable,
but can be assumed to be

diff <(ls -1h .) <(ls -1lh ~/Teaching/CMSC331)

1,22c1,13

< total 177M

< -rw-rw---- 1 bryan bryan 0 Feb 14 14:26 an empty file

< -rw-rw---- 1 bryan bryan 57K Feb 14 16:43 big files.txt

< drwxr-x--- 2 bryan bryan 4.0K Feb 14 15:00 binder

< drwxr-x--- 2 bryan bryan 4.0K Feb 14 15:25 data

< -rwxr-x--- 1 bryan bryan 176M Sep 11 22:40 en.openfoodfacts.org.products.csv
< -rw-rw—---- 1 bryan bryan 15 Feb 14 16:34 err

< -rwxrwx—--- 1 bryan bryan 5.4K Feb 12 14:53 Git.ipynb

< drwxrwx--- 2 bryan bryan 4.0K Feb 10 13:17 helper scripts
< drwxrwxr-x 2 bryan bryan 4.0K Feb 14 14:54 img

< -rwxr-x--- 1 bryan bryan 176K Nov 20 22:25 jupyter-php-installer.phar
< -rw-rw---- 1 bryan bryan 297K Feb 14 15:00 Lecture00.ipynb
< —-rw-rw---- 1 bryan bryan 43K Feb 14 15:00 LectureOl.ipynb
< -rwxrwx—--- 1 bryan bryan 43K Feb 12 14:53 LecturelO2.ipynb
< -rwxrwx--- 1 bryan bryan 26K Feb 12 14:53 Lecture03.ipynb
< -rwxrwx--- 1 bryan bryan 71K Feb 14 15:06 LectureO4.ipynb
< -rw-rw---- 1 bryan bryan 28K Feb 14 16:46 Lecture(05.ipynb
< -rw-rw---- 1 bryan bryan 15 Feb 14 16:34 out

< -rw-rw---- 1 bryan bryan 93 Feb 14 14:54 pngs

< -rw-rw---- 1 bryan bryan 149 Feb 14 16:45 scipy.log

< drwxr-x--- 6 bryan bryan 4.0K Feb 9 15:33 src

< lrwxrwxrwx 1 bryan bryan 26 Feb 12 15:26 upload -> ../teaching scripts/upl
oad

> total 228K

> drwxrwx—--- 2 bryan bryan 4.0K Feb 11 14:57 data

> drwxrwx--- 2 bryan bryan 4.0K Feb 11 19:51 img

> —rw-rw---- 1 bryan bryan 19K Feb 11 14:57 Lecture(00.ipynb
> —rw-rw---- 1 bryan bryan 21K Feb 11 14:57 Lecture(Ol.ipynb
> —-rw-rw---- 1 bryan bryan 17K Feb 14 10:10 Lecturel02.ipynb
> —rw-rw---- 1 bryan bryan 20K Feb 13 14:42 Lecture(03.ipynb
> —-rw-rw---- 1 bryan bryan 21K Feb 13 13:58 Lecturel4.ipynb

head -nl data/partl.tsv

1 Hydrogen H 1.008 14.01

head -nl data/part2.csv

H,1776

paste <(cut -f2 data/partl.tsv) <(cut -f2 data/part2.csv -d,)

Hydrogen 1776
Helium 1895
Lithium 1817
Beryllium 1797
Boron 1808

Process Substitution Practice

e Use process substitution to shuffle two files, concatenate them together, and

shuffle the final results
» data/numbers.txt - The list of numbers from before
= data/letters.txt - Alist of the letters of the alphabet, one per line

cat < (shuf data/numbers.txt) < (shuf data/letters.txt) | shuf
2
40

1

zZ

xargs

e Theoretically, you could pass the rm command a long list of directories to delete
= When this list of arguments becomes arbitarilaly too long, rm may break
= |tis better to call rmon each of the directories in turn

e xargs allows us to process a string, determine what the arguments are and how to
split them up, and how many times to call a command
= Very useful for calling acommand on the output of £ind

echo 1 2 3 4 | xargs 1ls

1s: cannot access 'l': No such file or directory
ls: cannot access '2': No such file or directory
1s: cannot access '3': No such file or directory

ls: cannot access '4': No such file or directory

1s *.ipynb | xargs file

Git.ipynb: ASCII text

Lecture0O0.ipynb: UTF-8 Unicode text, with very long lines
LectureOl.ipynb: ASCII text, with very long lines
Lecture02.ipynb: UTF-8 Unicode text, with very long lines
Lecture03.ipynb: ASCII text, with very long lines
LectureO4.ipynb: UTF-8 Unicode text

Lecture05.ipynb: ASCII text

ls img/*.png | xargs -I{} convert {} {}.Jpg

rm img/*.Jjpg
ls img/*.png > pngs
more pngs

xargs —-IFILE convert FILE FILE.]jpg < pngs

ls img/*.Jjpg

img/ajax-figl.png
img/ajax-fig2.png
img/fb messenger.png
img/fb verify.png
img/registers.png
img/ajax-figl.png.jpg
img/ajax-fig2.png.jpg

img/fb messenger.png.jpg
img/fb verify.png.Jjpg

img/registers.png.jpg

If-Then-Else

e The if block must end with £i
e The then keyword is required in bash
= Forbothelifandif

= Must be on a different line or follow on the same line after a semicolon

if CONDITIONAL; then
#CODE

elif CONDITIONAL; then
#CODE

else

#CODE

fi

If-Then-Else

e The if block must end with fi
e The then keyword is required in bash
m Forbothelifandif

= Must be on a different line or follow on the same line after a semicolon

if CONDITIONAL
then

#CODE

elif CONDITIONAL
then

#CODE

else

#CODE

fi

Conditional Expression in Bash

e Binary expressions in bash are evaluated
= Usingthe test command
» Usingthe [command (an alias of test)
= Using the [[syntax
e Results are stored as areturn code
= Not normally invoked on its own
* Whitespace is very important

[and test vs [[

e [and test are commands
o [[is part of bash syntax
= Allows for easier composition of conditionals using && and ||
= Parentheses don't have to be escaped
= Cando pattern matching and regular expressions as a conditional

Conditional Operators

e Bash has three types of conditional operators
= numeric operators
= string operators
= file operators
e You can always negate an comparison by using ! in front of it

Conditionals on Numbers

e Equal:-eq

e Not Equal: -ne

e Greater Than: -gt

e Greater Thanor Equal: -ge
e Less Than:-It

e Less Thanor Equal: -le

In

[22] :

if [1 -eqg 7]; then
echo "What math are you doing?"
else

echo "One is not equal to 7"
fi

One is not equal to 7

if [1 -ne 7]; then
echo "One is not equal to 7"
else

echo "What math are you doing?"
fi

One is not equal to 7

In [23]: if [! 1 -eq 7]; then
echo "What math are you doing?"
else
echo "One is not equal to 7"
fi

What math are you doing?

b=2

if [$a -1t $b]; then

echo "$a is smaller than Sb"
else

echo "$b is smallter than $a"
fi

1 is smaller than 2

In [27]: a=1

b=2

if [[$a -1t $b && $b -gt $a 1]; then
echo "$a is smaller than S$Sb"

else

echo "$b is smallter than $a"

fi

1 is smaller than 2

Conditionals on Strings

e Equal: =

e Not Equal:!=

e |sEmpty:-z

e |sNot Empty: -n

stringl="A string"
string2="Another string"

string3=

if [[$stringl = S$stringl]]; then
echo "The strings are the same"

fi

The strings are the same

if [[-z $string3]]; then
echo "The string is empty"
fi

The string is empty

if [[-n $string2]]; then
echo "The string is not empty"
fi

The string is not empty

Conditionals on Files

e There are about 20 different tests that can be performed on a file
= man test showsthem all
e Some common ones are:
= EXxistence: -e
= |safile:-f
= |sadirectory:-d
= |sreadable/writable/executable: -r/-w/-x
= [sn't empty: -s

In [31]: more data/a missing file

more: stat of data/a missing file failed: No such file or directory

In [32]: if [[! -e 'a missing file']]; then
echo "Lets make a file" > data/a missing file
fi

more data/a missing file

Lets make a file

In [33]: touch an empty file

if [[-e 'an empty file']]; then
echo "An empty file exists"

fi

if [[-s 'an empty file']]; then
echo "The file isn't empty"

fi

An empty file exists

if [-f .]; then

echo "This directory isn't a file...something is messed up"
else

echo "All is right in the world"
fi

All is right in the world

If Statement Practice

e Write a simple bash script that prints "Be Careful" if the argument passed to it is

= Afileand
= Writable and
= Not empty
In [38]: a name=data/numbers.txt
if [[-f Sa name && -w $Sa name && -s Sa name]]; then

echo "Be Careful"
fi

Be Careful

Switch Statements

e Switch statements start with the keyword case and end with the keyword esac
e Each clauseis a pattern to match the expression against

= The pattern in a clause ends with a right parentheses)

= A clause must end with two semicolons (;;)

In [3]: expression="This is a String"

case Sexpression in

0)
echo "The wvariable is 0"
*ing)
echo "The variable ends in ing"
*String)
echo "The variable ends in String"
*)
echo "This is the default"
esac

The variable ends in ing

For Loops

e Bash has traditionally used a foreach style loop (similar to Python)
e Canloop over any type of array

= Can also loop over files
e Both loops have the general syntax of

for EXPRESSION(S); do
CODE GOES HERE
done

Foreach Style Loop

e The foreach style loop uses the setup of

for variable in list; do

e l|istcanbe
= 3space seperated list
= an expanded array
= 3shell-style regular expression (globbing)
= the output of acommand

In

In

for x in 1 2 3; do
echo $x;
done

N

my array=(1l1 2 3)

for y in ${my array([@]}; do
echo Sy

done

N

In

for £ in *.ipynb; do
we -1 S$f
done

176 Git.ipynb

687 Lecture(00.ipynb

1580 LecturelOl.ipynb
1515 Lecturel02.ipynb
937 Lecturel03.ipynb

2853 Lecturel4.ipynb
1580 Lecture(05.ipynb
972 Lecturel6.ipynb

For Loop Practice

e Write afor loop that finds the most common line in each file in the data directory
= Hint: use head to find most common

for £ in data/*; do
sort $f | unig -c
done

1 Aalborg Aalborg Airport AAL

sort -n —--key=2 |

head —-nl

Denmark Europe

sort: write failed: 'standard output': Broken pipe
sort: write error

1 Lets make a file

1 1.2G Downloads

1 1 Hydrogen

1 0% Fat Greek Style Yogurt With Honey 04/08/2017 France 0.0
0.5 6.5 0.0 11.8 0.0 0.0 0.0 0.0 70.8661417323
0.0

1 code url creator created t created datetime last m
odified t last modified datetime product name generic_name quanti
ty packaging packaging tags brands brands tags categories

categories tags categories en
manufacturing places tags

origins
labels

origins_ tags
labels tags

des emb codes tags first packaging code geo
purchase places stores countries countries tags
ients text allergens allergens en traces

_en
ves tags
om palm oil
alm oil n

e from palm oil tags
roups 1 pnns_groups 2

serving size

no nutriments
ingredients from palm oil n
ingredients that may be from p

additives en
ingredients from palm oil tags
ingredients that may be from palm oil
nutrition grade uk

states

additives n

states tags

nutrition grade fr
states en

manufacturing places

labels en emb co
cities «cities tags

countries en ingred
traces tags traces
additives additi

ingredients fr

ingredients that may b

pnns g
main_ category

C-Style Loop

e Support for the C-style loop is widespread in bash, but not all shell scripts
e The syntax for the C-style loop is:

for ((START ; END ; CHANGE)); do

* The variable isn't prefixed with the dollar sign ($) inside the loop definition

In [14]: for ((x = 1; x < 4; x++)); do
echo $x
done

N

In [15]: for ((x = 1; x < 4; x += 2)); do
echo $x
done

seq Command

e There are many other ways to do a c-style loop while using the traditional syntax
e Oneoptionis the segcommand, which returns a list of numbers

e The syntax of the seqcommand is
seq START INCREASE? END

for i in
echo
done

N

for i in
echo
done

= o o &~DN O

$(seg 1 3); do
Si

$(seqg 0 2 10); do

$i

Brace Expansion

e Another feature of bash that is often, but not exclusively used, with loops is brace
expansion

e Bash will expand anything in braces into a list
e Braces can take two forms:
{A_LIST, OF, OPTIONS}
or
{START. .END}

echo Lecture0{0,1,2,3,4,5}.ipynb | xargs 1ls -1lh | cut -f6,7,8 -d'

Feb 14 15:00
43K Feb 14
43K Feb 12
26K Feb 12
71K Feb 14
39K Feb 19

In [19]: for i in {0..5}; do
ls -1h Lecture0$i.ipynb | cut -fo6,7,8 -d' '
done

Feb 14 15:00
Feb 14 15:00
Feb 12 14:53
Feb 12 14:53
Feb 14 15:06
Feb 19 16:18

While Loops

¢ While loops also use the do expression after the condition

e The syntax for awhile loop is

while CONDITION; do
#CODE_HERE
done

string="'Some Characters'
while [[-n $string]]; do
echo ${string:0:1}
string=${string:1}
done

O 3 0 W

B8 000 o B8 0 50

Until Loops

e Theuntil loopisalmostidentical to the while loop, but continues until the
statement is True
e Theuntil isstill places at the top of the loop and checked before entering it

e Thesyntaxofuntilis

until CONDITIONAL; do
#CODE GOES HERE
done

string="'Some Characters'
until [[-z Sstring]]; do
echo ${string:0:1}
string=${string:1}
done

O 3 0 W

B8 000 o B8 0 50

