
Regular Expressions

Optimization, Python, and Git

Optimizing Regular Expressions

Regular expressions are extremely powerful, but can be quite time consuming
A Google search for "optimizing regular expressions" returns dozens of articles
and blogs about the subject
My basic rules of thumb:

Get it working �rst
Don't be afraid to look for another solution

Why Regular Expressions can be Slow

Some of this is implementation dependent, but regular expressions work by
going through a string one character at a time, looking for matches

If there are a lot of comparisons to be made at each character in the
string, this will slow the regex down

Some regexes require backtracking to determine if there is a match or not
The more backtracking, the longer the regex will take to execute
A good resource on this is

Although written as an ad for their product, it does have a lot
of helpful information

Catastrophic Backtracking

http://www.regular-expressions.info/catastrophic.html

Optimization Tip 1

Don't use regular expressions if you don't have to
This is especially true if the pattern you are searching for is all literals

In []:

In []:

%%bash
time perl src/perl/slow.pl

%load src/perl/slow.pl

In []:

In []:

%%bash
time perl src/perl/fast.pl

%load src/perl/slow.pl;

Optimization Tip 2

If you can, use ^ and $ anchors
Limiting where a match can occur can make a regex fail faster

In []:

In []:

%%bash
time perl src/perl/anchored.pl

%%bash
time perl src/perl/unanchored.pl

Optimization Tip 3

Avoid quanti�ers if you don't need to use them
If you need to use them, see if you can use the non-greedy version

In []:

In []:

%%bash
time perl src/perl/greedy.pl

%%bash
time perl src/perl/nongreedy.pl

Optimization Tip 4

Structure your alternations ef�ciently
Alternations are searched left-to-righ, so put the (suspected) most
common �rst

In []:

In []:

%%bash
time perl src/perl/good_alt.pl

%%bash
time perl src/perl/bad_alt.pl

Optimization Tip 5

Use non-capturing groups
If you are just using grouping to apply a quanti�er or something else
over a part of a pattern, consider a non-capturing group (?:pattern)

In []:

In []:

%%bash
time perl src/perl/capture.pl

%%bash
time perl src/perl/noncapture.pl

Regex in Python

Intro to re Module

Regular expressions are not built into the core python language
Available by importing the standard re module

Matching and substitution are done using methods
To avoid having to escape the \ character in Python so the regex can process use
a raw string

r'This is a raw python string\n'

In []: import re

Simple Matching

The re module has 4 methods to performing matching
re.match
re.search
re.�ndall
re.�nditer

All methods take the arguments (pattern, string, optional_�ags)

In []:

In []:

if re.match(r'needle',r'Is there a needle in this haystack?'):
 print "match"

if re.search(r'needle',r'Is there a needle in this haystack?'):
 print "match"

The Match Object

Regular expressions don't evaluate to true or false in Python
If a match is found, a MatchObject is returned
If no match is found, None is returned

The MatchObject can be used to access groups found in the match, as well as
information such as position

In []:

In []:

re.search(r'needle',r'Is there a needle in this haystack?')

match = re.search(r'(\w+)\sneedle',r'Is there a needle in this haystack?')
print match.group(0)
print match.group(1)

re.�ndall and re.�nditer

Rather than using a g modi�er, Python has two specialized functions
re.�ndall returns the groups themselves
re.�nditer returns an iterator over MatchObjects

In []:

In []:

re.findall(r'\b\w*a\w*\b', r'Is there a needle in this haystack?')

re.findall(r'\b(\w*)a(\w*)\b', r'Is there a needle in this haystack?')

Backreferencing

Backreferencing works exactly the same in Python
Python also allows named groups, but personally I �nd it messy

In []:

In []:

re.findall(r'(\w)\1', r'Is there a needle in this haystack?')

re.findall(r'(?P<a_letter>\w)(?P=a_letter)', r'Is there a needle in this haystac
k?')

Substitution

Substitution is done using the re.sub method

re.sub is global by default. To do only one substitution set the count
parameter to 1
replacement can be either a string or a function that takes a MatchObject as
it's argument
Back references are done using \1 instead of $1

re.sub(pattern,replacement,string,count=0,flags=0)

Substitution Examples

In []:

In []:

re.sub(r'(\w)\1','oo',r'Is there a needle in this haystack?')

re.sub(r'(\w)\1',r'\1',r'Is there a needle in this haystack?')

Splitting Strings

The re module can split strings using the split method

In []:

re.split(regex,string,limit,flags)

re.split(r'[aeiou]+',r'Is there a needle in this haystack?')

Using Flags

Flags in Python are constans of the re module
re.I and re.IGNORECASE are equivalent to the i modi�er in Perl
re.M and re.MULTILINE are equivalent to the m modi�er in Perl

To use multiple �ags, you must "or" them together

Flag Examples

In []:

In []:

re.search(r'n(\w)\1dle',r'Is there a\n NOODLE in this haystack')

match = re.search(r'n(\w)\1dle',r'Is there a\n NOODLE in this haystack',flags =
re.I | re.M)
print match.start(), match.end(), match.pos, match.group(0), match.group(1)

Compliling Regular Expressions

If a regular expression is going to be used over and over again, you should
compile it to the languages internal representation

Most languages have a concept of compilation
In Python, calling re.compile(pattern,flags) will return a
RegexObject

The methods of a RegexObject are mostly the same as the re module, but the
pattern is no longer passsed as an argument

Compiling Regular Expressions Examples

In []: regex = re.compile(r'n(\w)\1dle',flags = re.I | re.M)
if regex.search('iS ThERe a \nNOoDLE iN This HaYStaCK'):
 print "Match"

print regex.sub(r"z\1\1",'Is there a noodle in Baltimore?')

for match in regex.finditer('You shouldn\'t sew your clothes with a noodle, no m
atter how many needles you have'):
 print match.group(0)

