
Regular Expressions

Backreferences, Accessing Matches, and Substitution

Warm-Up

In []: # Write a regular expression that finds all songs
in the top 100 by only one person
Finesse by Bruno Mars & Cardi B SHOULD NOT MATCH
Too Good At Goodbyes by Sam Smith SHOULD MATCH
Young Dumb & Broke by Khalid SHOULD MATCH

foreach my $s (@songs) {
 say $s if $s =~ /REGEX_HERE/;
}

Today's Data

Today we will be working CSV data of international airports and their cities,
countries, and continent
Each line has the format of

The data was scraped from

csv
 City, Airport Name, Airport Code, Country, Continent

https://en.wikipedia.org/wiki/List_of_international_airports_by_country

https://en.wikipedia.org/wiki/List_of_international_airports_by_country

Backreferences

Last lecture we primarily used grouping to make our regex's neater.
One of the most powerful uses of grouping is to specify seeing the same match
later in the expression
Each group is assigned a number by the regular expression engine

To refer back to that group, use backslash followed by the number, e.g.
\1

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 say $row if $row =~ /^.*\t(\b\w+\b).*\W.*\1.*\t.*\t.*\t.*$/;
}
close($fh);

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 say $row if $row =~
 /\t.*(\w).*(\w).*(\w).*\t\1\2\3\t.*\t.*$/;
}
close($fh);

Backreference Ordering

If there are multiple groups in a regex, they are numbered by their left
parentheses
This can get confusing, here is a helpful chart presented by Dan Hood

Backrefercing Practice

In []: # Write a regular epxression that finds airports with at
least part of their country name in the airport name.
Alternatively, find a country with part of the airport
name in it
open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 say $row if $row =~ /REGEX_HERE/;
}
close($fh);

Accessing Matches

Often we want to retrieve a speci�c part of the match
We can do this by using groups, and then referring back to the group number
later in the code
Each language has a slightly different way of doing this

In Perl this uses the same numbering scheme as back-references, but
the matches are stored in Perl variables
If it is the �rst match, use $1 rather than \1

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 if ($row =~ /\t(.*)\t.*\tEngland/){
 say $1;
 }
}
close($fh);

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 if ($row =~ /^(.*)\t\1(.+)\sInternational Airport\t/){
 say $2;
 }
}
close($fh);

Substitution Introduction

Many times the reason we want to know if something is present is so we can
replace it
Regular expressions give us much more powerful, dynamic ways of replacing
than just string literals offer
The following aren't possible (or aren't simple) with string literals

410-455-1000 (410) 455-1000
if x == 4 : print x , y ; x , y = y , x if x ==
4: print x, y; x, y = y, x

→

→

Substitution Basics

In Perl the syntax for a substitution regex is s/regex/substitution/
The regex is the only part that can use metacharacters

The substition can consist of literal characters or special variables

In []: $ssn = "A social security number looks like 000-12-3456 or 000-98-7654";
$ssn =~ s/\d{3}-\d\d-\d{4}/****/;
say $ssn;

Simple Substitution using the g Modi�er

In most cases, we want to use substitution to substitute all matches, so we
should use the g modi�er

In []: $ssn = "A social security number looks like 000-12-3456 or 000-98-7654";
$ssn =~ s/\d{3}-\d\d-\d{4}/****/g;
say $ssn;

Simple Substitution with Literals

The pattern portion can consist only of literals
Many languages now have a speci�c replace method or function to
operate on strings
Still very useful to use fast simple tools like sed

In []: $umbc = "UMBC is located in MD";
$umbc =~ s/UMBC/The University of Maryland, Baltimore County/g;
say $umbc;
$umbc =~ s/MD/Maryland/g;
say $umbc;

Basic Substitution Practice

In []: ## Write a substitution pattern to replace any non-legal UNIX filename
characters with an underscore. Multipe non-legal characters in
a row should be replaced with a single underscore
Legal Characters: A-Z, a-z, 0-9, . , - , _
$file_name = " My invalid / file[Name]";
$file_name =~ s/REGEX/REPLACE/g;
say $file_name;

Backreference Variables

Many common tasks, like reformatting, involving saving part of the match
To refer to a group found in the pattern, use $x, where x is the group
number

In []: $today = "Today's date is 2-5-18";
$today =~ s/(\d?\d)-(\d?\d)-(\d\d)/$1\/$2\/$3/g;
say $today;

In []:

In []:

$today = "Today's date is 02-05-18";
$today =~ s/(\d?\d)-(\d?\d)-(\d\d)/$1\/$2\/$3/g;
say $today;

$ssn = "A social security number looks like 000-12-3456 or 000-98-7654";
$ssn =~ s/\d\d\d-\d\d-(\d{4})/***-**-$1/g;
say $ssn;

Sidenote: Changing Delimiters

When matching or substituting a string with the / character, it can be very
annoying to escape all of them
Almost any puncuation can be used as the delimiter

If it is a character that comes in pairs, you should use the left and right
versions

In []: $today = "Today's date is 02-05-18";
$today =~ s[(\d?\d)-(\d?\d)-(\d\d)][$1/$2/$3]g;
say $today;

In []: $today = "Today's date is 09-07-17";
$today =~ s!(\d?\d)-(\d?\d)-(\d\d)!$1/$2/$3!g;
say $today;

Substitution Live Example

In []: # Given a string of non PEP compliant spacing in
[] or {} or (), remove all extraneous spacing
array[4] -> array[4]
$x = "spam(ham[1], { eggs: 2 })";
$x =~ s/REGEX/SUBSTITUTE/g;
say $x;

Substitution Practice

In []: # Repalace all relative links (of the form href="index.html" etc,)
with absolute links, (of the
#form href="https://cs.umbc.edu/coursese/undergraduate/433/index.html")
assume absolute path is as above

$html = 'A linkAn image';
$html =~ s|REGEX|SUBSTITUTE|g;
say $html;

Lookahead and Lookbehind

In some instances, we want to match, but not capture a piece of text
Are zero-width assertaions
After the look ahead is complete we return to the same place in the
text

A lookahead is written as:

(?=pattern)

A lookbehind is written as:

(?<=pattern)

They usually cannot be variable length

Lookahead Example

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 if ($row =~ /\t.*\t(?=.*\tEngland)/){
 say $&;
 }
}
close($fh);

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 if ($row =~ s/\t(.*)\t(?=.*\tEngland)/\tBritian's $1\t/){
 say $row;
 }
}
close($fh);

Lookbehind Example

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 if ($row =~ /(?<=London\t).*/){
 say $&;
 }
}
close($fh);

Lookahead and Lookbehind Example

Lets assume that in our text every 7 digit number is a phone number

In []: $bad_number = "1234567";
$bad_number =~ s/(?<=\d\d\d)(?=\d\d\d\d)/-/g;
say $bad_number;

Live Lookahead Example

In the beginning of the lecture we looked at how regex's are helpful for code
reformattting
The speci�c python convention we looked at was no spaces immediately before
a comma, semicolon, or colon

In []: $code = "if x == 4 : print x , y ; x , y = y , x"
$code =~ s/REGEX/REPLACEMENT/g;
say $code;

Lookahead Practice

In []: # Substitute all instances of James with President,
when followed by Monroe or Madison or Polk

$text = <<HERE;
James is a common name for presidents, there have been many
presidents named James, like James Madison, James Monroe,
and James Polk. Lebron James has not been US president.
HERE

$text =~ s/REXEG/SUBSTITUTION/g;
say $text;

Negative Lookahead and Behind

A useful ability is to ensure the thing you are looking for is not followed or
preceded by something

This is a negative lookahead or lookbehind, and the syntax is almost identical,
except the = is now a !

Negative Lookahead

(?!pattern)

Negative Lookbehind

(?<!pattern)

Negative Lookahead and Behind Examples

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
 chomp $row; #Remove trailing \n
 if ($row =~ /^.*\t.*International (?!Airport).*\t/){
 say $&;
 }
}
close($fh);

Splitting Strings

Regular Expressions allow strings to be split in more dynamic ways

In []: $bad_csv_data = "Name,Phone Number,Email,a,list,of,websites,visited,Date";
@data = split /,(?=[A-Z])/, $bad_csv_data;
foreach $d (@data){
 if ($d =~ /,/){
 foreach $e (split /,/, $d, 2)
 {say $e}
 }
 else{
 say $d;
 }
}

