
All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 11

Introduction to Cryptography (continued)

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 2

Last Class We Covered

 Introduction to crypto

 Definitions

 Ciphers

 Block ciphers

 DES

 3DES

 AES

 Confusion and diffusion

 Parallelization

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 4

Today’s Topics

 Block cypher modes

 Asymmetric encryption

 Diffie-Hellman

 RSA

 Math (for real this time)

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 5

Modes of Operation

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 6

Modes of Operation

 Block ciphers themselves are only good for encrypting a block

 Repeatedly applying a block cipher to larger amounts

of data requires a mode of operation

 Some modes require an Initialization Vector (IV) to get started

 Different modes of operation exist for different purposes

 Efficiency

 Parallel encrypt and/or decrypt

 Encrypting a stream

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 7

Notation

 EK(P)

 Encryption of plaintext P with key K using an arbitrary block cipher

 DK(C)

 Decryption of cipher C with key K using an arbitrary block cipher

 Arbitrary block cipher

 For example, DES, 3DES, or AES

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 8

Electronic Codebook Mode (ECB)

 Simplest and most naïve mode of operation

 Simply encrypts/decrypts each block with the same key

 Pros:

 En/decryption can be performed in parallel

 Cons:

 Requires padding of plaintext

 Low diffusion

Image taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Ci = EK(Pi)

Pi = DK(Ci)

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 9

Quick Note: Padding

 Padding involves adding garbage/filler to the end of the

plaintext so that it perfectly fits within a block size

 Downside is not the space “wasted” on the extra text

 Rather, padding can allow an adversary to examine and learn

things about the plaintext by examining the padded ciphertext

 Not something we’ll go into in depth in class

 Read about “padding oracle attacks” for more information

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 10

Cipher Block Chaining Mode (CBC)

 Each block of plaintext is XORed with the previous

ciphertext block before being encrypted

 Uses an initialization vector for the first plaintext block

 Pros:

 Much better diffusion

 Cons:

 Requires padding

 Can’t parallelize encryption

 But can parallelize decryption – why?

Ci = EK(Pi ⊕ Ci-1)

Pi = DK(Ci) ⊕ Ci-1

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 11

Cipher Feedback Mode (CFB)

 Each block of plaintext is XORed with the previous

ciphertext block after the previous ciphertext is re-encrypted

 Plaintext never directly “touches” the encryption algorithm

 Uses an initialization vector for the first plaintext block

 Block cipher is now a “stream cipher”

 Uses the block cipher as a “key generator”

 Digits can be encrypted one at a time,

which means no padding is necessary

 Encryption cannot be parallelized

Ci = EK(Ci-1) ⊕ Pi

Pi = EK(Ci-1) ⊕ Ci

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 12

Counter Mode (CTR)

 Also works as a stream cipher

 Requires a pseudo-random seed, S, to function

 For each successive en/decrypt, the seed “counts” up by one

 Pros:

 Encryption can be parallelized, as seed simply counts up

 Decryption can be parallelized as well

 Plaintext does not need to be padded

 Cons:

 ???

Ci = EK(S + i -1) ⊕ Pi

Pi = EK(S + i -1) ⊕ Ci

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 13

Comparison of Modes of Operation

1 Encrypting structured or repeating plaintext results in repeating cipher blocks

Parallel

Encrypt

Parallel

Decrypt

Padding

Required

Stream

Cipher

Initialization

Vector

Repeats

in Cipher1

ECB ✔ ✔ ✔ ✔

CBC ✔ ✔ ✔

CFB ✔ ✔ ✔

CTR ✔ ✔ ✔

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 14

Enc. Algorithms of Modes of Operation

Images taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 15

Diffie-Hellman

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 16

Shortcomings of Symmetric Encryption

 Symmetric key must remain secret to be secure

 But how do you communicate what the secret key is?

 Without already having a secret key?

 ???

 You can’t!

 Need some way to share keys over an unsecured channel

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 17

Diffie-Hellman Key Exchange

 Named after Whitfield Diffie and Martin Hellman

 It is a way for two parties to

 Use insecure communication to

 Agree on a cryptographic key

 Without anyone else being able to figure out what it is

 Neither party “chooses” the key, but that doesn’t matter

 They just need the same one

 How to achieve this?

 Math!

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 18

Basic Diffie-Hellman Algorithm

 Choose two non-secret values p and g

 p is prime

 g is generator, a primitive root modulo p (don’t worry about this right now!)

 Each party

 Chooses an integer Y in the range 1 to p - 1 (inclusive)

 Calculates y = gY % p and transmit y across the clear channel

 Use the other party’s transmitted integer (x) to calculate K = xY % p

 Both parties now have the same value K, for a symmetric key

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 19

Example Diffie-Hellman Algorithm

 Alice and Bob agree to use p = 37 and g = 11

 Normally they would use large numbers, but this is an example

 Alice chooses the integer A = 2, Bob chooses B = 9

 a = gA % p a = 112 % 37 a = 10

 b = gB % p b = 119 % 37 b = 36

 Over the clear channel, Alice transmits 10 and Bob transmits 36

 Each now calculates the key K

 Alice: K = bA % p K = 362 % 37 K = 1

 Bob: K = aB % p K = 109 % 37 K = 1

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 20

Diffie-Hellman: The Math

 Alice calculates a = gA % p

 Bob calculates b = gB % p

 They transmit these values of a and b to each other, then…

 Alice calculates K = bA % p same thing as (gB % p)A % p

 Bob calculates K = aB % p same thing as (gA % p)B % p

 Both of which simplify to gAB % p

 (Because ~*~math~*~)

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 21

Diffie-Hellman Security

 Only p, g, a, and b are transmitted in the clear

 So any attacker could have those

 But to calculate K, they also need either A or B

 Which they could solve for with the formula logg B % p

 But this is really hard to do when p is 600 digits long

 (For now – if this changes, we’re all in deep trouble.)

 Private keys (A and B) should also be large numbers

 Makes them difficult to calculate for an attacker, or even

for the other legitimate person in the communication

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 22

RSA (not a real acronym)

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 23

RSA Overview

 RSA stands for Rivest, Shamir, and Adleman, its inventors

 Is not necessarily a method for key exchange

 Is a form of asymmetric encryption

 Uses two separate keys: public and private

 Public key is available to anyone and everyone

 Private key must be kept secret

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 24

RSA Key Generation Algorithm

 Pick two secret prime numbers, P and Q

 With those values, calculate n = P * Q

 Choose a valid public exponent e

 Software today uses 65537 (0x10001) to make calculations faster

 A valid e is not a factor of n, and must be less than (P-1)*(Q-1) (~*~math~*~)

 Calculate a private exponent D

 Such that e is congruent to D % (P -1) * (Q -1) (more ~*~math~*~)

 Public key components are n and e

 Private key components are n and D (normally save P and Q too)

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 25

Using RSA Keys

 Encryption

 The plaintext P is converted into an integer M

 (Don’t worry about this for now)

 c = M e % n (remember, e and n were our public key components)

 Decryption

 M = c D % n (remember, D and n were our private key components)

 Mathematical proof

 Outside of the scope of this class (number theory, etc.)

 Read the paper if you’re really interested

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 26

RSA Example: Key Generation

 Key generation:

 Choose P = 43 and Q = 59

 Calculate n = P * Q n = 43 * 59 n = 2537

 Choose e = 67

 Calculate D = 1927

 Public key: n = 2537, e = 67

 Private key: n = 2537, D = 1927

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 27

RSA Example: Encryption/Decryption

 Now, someone wants to send you a message M = 42

 To encrypt it, they use your public key: n = 2537, e = 67

 c = M e % n c = 4267 % 2537 c = 1332

 This ciphertext of 1332 is sent over a clear channel

 After receiving the message 1332, you want to read it

 To decrypt, you’ll use your private key: n = 2537, D = 1927

 M = c D % n M = 13321927 % 2537 M = 42

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 28

RSA Security

 An attacker has access to only n and e

 They need access to D to have a complete private key

 If they could factor P and Q out of n, they could calculate D

 Fortunately, calculating the large primes that are the only

factors for a large number is hard

 The larger the primes, the harder it is to factor

 Fun fact: the largest known prime is 277,232,917 − 1

 It has 23,249,425 digits

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 29

RSA: Digital Signatures

 Encryption and decryption are inverses of each other

 If something is encrypted with the private key,

it can be decrypted with the public key

 What does this allow us to do?

 State “only this person could have encrypted this”

 This is part of something called a digital signature, and is

meant to prove the message came from a specific individual

 Digital signatures are more complex than just this;

we’ll discuss the details next time

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 30

(Pseudo)-Random Number Generation

 rand() is not an acceptable (pseudo) random number

generator for anything that has an actual purpose

 If you want something statistically viable, you need to use an

actually good pseudorandom number generator (PRNG)

 If you’re going to use the numbers for security-related

purposes, use a cryptographically secure pseudorandom

number generator (CSPRNG)
 If you don’t know if it’s a CSPRNG, it probably isn’t

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 31

Quantum Computing

 If a sufficiently large quantum computer is ever built:

 RSA and Diffie-Hellman are completely broken by

an algorithm called Shor’s algorithm

 The bit length of symmetric ciphers is effectively halved
 If it would previously require 2128 computations to crack something,

it would only require 264 quantum computations

All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 32

Announcements

 Lab 2 is due Thursday night

 Paper 1 will be coming out soon

 Exams are graded and available for pickup

