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CMSC 426

Principles of Computer Security

Lecture 11

Introduction to Cryptography (continued)
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Last Class We Covered

 Introduction to crypto

 Definitions

 Ciphers

 Block ciphers

 DES

 3DES

 AES

 Confusion and diffusion

 Parallelization
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Any Questions from Last Time?
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Today’s Topics

 Block cypher modes

 Asymmetric encryption

 Diffie-Hellman

 RSA

 Math (for real this time)
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Modes of Operation
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Modes of Operation

 Block ciphers themselves are only good for encrypting a block

 Repeatedly applying a block cipher to larger amounts 

of data requires a mode of operation

 Some modes require an Initialization Vector (IV) to get started

 Different modes of operation exist for different purposes

 Efficiency

 Parallel encrypt and/or decrypt

 Encrypting a stream



All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 7

Notation

 EK(P)

 Encryption of plaintext P with key K using an arbitrary block cipher

 DK(C)

 Decryption of cipher C with key K using an arbitrary block cipher

 Arbitrary block cipher

 For example, DES, 3DES, or AES
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Electronic Codebook Mode (ECB)

 Simplest and most naïve mode of operation

 Simply encrypts/decrypts each block with the same key

 Pros:

 En/decryption can be performed in parallel

 Cons:

 Requires padding of plaintext

 Low diffusion

Image taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Ci = EK(Pi)

Pi = DK(Ci)
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Quick Note: Padding

 Padding involves adding garbage/filler to the end of the 

plaintext so that it perfectly fits within a block size

 Downside is not the space “wasted” on the extra text

 Rather, padding can allow an adversary to examine and learn 

things about the plaintext by examining the padded ciphertext

 Not something we’ll go into in depth in class

 Read about “padding oracle attacks” for more information
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Cipher Block Chaining Mode (CBC)

 Each block of plaintext is XORed with the previous 

ciphertext block before being encrypted

 Uses an initialization vector for the first plaintext block

 Pros:

 Much better diffusion

 Cons:

 Requires padding

 Can’t parallelize encryption

 But can parallelize decryption – why?

Ci = EK(Pi ⊕ Ci-1)

Pi = DK(Ci) ⊕ Ci-1
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Cipher Feedback Mode (CFB)

 Each block of plaintext is XORed with the previous 

ciphertext block after the previous ciphertext is re-encrypted

 Plaintext never directly “touches” the encryption algorithm

 Uses an initialization vector for the first plaintext block

 Block cipher is now a “stream cipher”

 Uses the block cipher as a “key generator”

 Digits can be encrypted one at a time,

which means no padding is necessary

 Encryption cannot be parallelized

Ci = EK(Ci-1) ⊕ Pi

Pi = EK(Ci-1) ⊕ Ci
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Counter Mode (CTR)

 Also works as a stream cipher

 Requires a pseudo-random seed, S, to function

 For each successive en/decrypt, the seed “counts” up by one

 Pros:

 Encryption can be parallelized, as seed simply counts up

 Decryption can be parallelized as well

 Plaintext does not need to be padded

 Cons:

 ???

Ci = EK(S + i -1) ⊕ Pi

Pi = EK(S + i -1) ⊕ Ci
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Comparison of Modes of Operation

1 Encrypting structured or repeating plaintext results in repeating cipher blocks

Parallel 

Encrypt

Parallel 

Decrypt

Padding 

Required

Stream 

Cipher

Initialization

Vector

Repeats 

in Cipher1

ECB ✔ ✔ ✔ ✔

CBC ✔ ✔ ✔

CFB ✔ ✔ ✔

CTR ✔ ✔ ✔
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Enc. Algorithms of Modes of Operation

Images taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
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Diffie-Hellman
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Shortcomings of Symmetric Encryption

 Symmetric key must remain secret to be secure

 But how do you communicate what the secret key is?

 Without already having a secret key?

 ???

 You can’t!

 Need some way to share keys over an unsecured channel
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Diffie-Hellman Key Exchange

 Named after Whitfield Diffie and Martin Hellman

 It is a way for two parties to

 Use insecure communication to

 Agree on a cryptographic key

 Without anyone else being able to figure out what it is

 Neither party “chooses” the key, but that doesn’t matter

 They just need the same one

 How to achieve this?

 Math!
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Basic Diffie-Hellman Algorithm

 Choose two non-secret values p and g

 p is prime

 g is generator, a primitive root modulo p (don’t worry about this right now!)

 Each party

 Chooses an integer Y in the range 1 to p - 1 (inclusive)

 Calculates y = gY % p and transmit y across the clear channel

 Use the other party’s transmitted integer (x) to calculate K = xY % p

 Both parties now have the same value K, for a symmetric key
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Example Diffie-Hellman Algorithm

 Alice and Bob agree to use p = 37 and g = 11

 Normally they would use large numbers, but this is an example

 Alice chooses the integer A = 2, Bob chooses B = 9

 a = gA % p a = 112 %  37 a = 10

 b = gB % p b = 119 %   37 b = 36

 Over the clear channel, Alice transmits 10 and Bob transmits 36

 Each now calculates the key K

 Alice: K = bA % p K = 362 % 37 K = 1

 Bob:  K = aB % p K = 109 % 37 K = 1
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Diffie-Hellman: The Math

 Alice calculates a = gA % p

 Bob calculates  b = gB % p

 They transmit these values of a and b to each other, then…

 Alice calculates K = bA % p same thing as (gB % p)A % p

 Bob calculates   K = aB % p same thing as (gA % p)B % p

 Both of which simplify to gAB % p

 (Because ~*~math~*~)
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Diffie-Hellman Security

 Only p, g, a, and b are transmitted in the clear

 So any attacker could have those

 But to calculate K, they also need either A or B

 Which they could solve for with the formula logg B % p

 But this is really hard to do when p is 600 digits long

 (For now – if this changes, we’re all in deep trouble.)

 Private keys (A and B) should also be large numbers

 Makes them difficult to calculate for an attacker, or even 

for the other legitimate person in the communication
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RSA (not a real acronym)
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RSA Overview

 RSA stands for Rivest, Shamir, and Adleman, its inventors

 Is not necessarily a method for key exchange

 Is a form of asymmetric encryption

 Uses two separate keys: public and private

 Public key is available to anyone and everyone

 Private key must be kept secret
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RSA Key Generation Algorithm

 Pick two secret prime numbers, P and Q

 With those values, calculate n = P * Q

 Choose a valid public exponent e

 Software today uses 65537 (0x10001) to make calculations faster

 A valid e is not a factor of n, and must be less than (P-1)*(Q-1) (~*~math~*~)

 Calculate a private exponent D

 Such that e is congruent to D % (P -1) * (Q -1) (more ~*~math~*~)

 Public key components are n and e

 Private key components are n and D (normally save P and Q too)
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Using RSA Keys

 Encryption

 The plaintext P is converted into an integer M

 (Don’t worry about this for now)

 c = M e % n (remember, e and n were our public key components)

 Decryption

 M = c D % n (remember, D and n were our private key components)

 Mathematical proof

 Outside of the scope of this class (number theory, etc.)

 Read the paper if you’re really interested
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RSA Example: Key Generation

 Key generation:

 Choose P = 43 and Q = 59

 Calculate n = P * Q n = 43 * 59 n = 2537

 Choose e = 67

 Calculate D = 1927

 Public key: n = 2537, e = 67

 Private key: n = 2537, D = 1927
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RSA Example: Encryption/Decryption

 Now, someone wants to send you a message M = 42

 To encrypt it, they use your public key: n = 2537, e = 67

 c = M e % n c = 4267 % 2537 c = 1332

 This ciphertext of 1332 is sent over a clear channel

 After receiving the message 1332, you want to read it

 To decrypt, you’ll use your private key: n = 2537, D = 1927

 M = c D % n M = 13321927 % 2537 M = 42
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RSA Security

 An attacker has access to only n and e

 They need access to D to have a complete private key

 If they could factor P and Q out of n, they could calculate D

 Fortunately, calculating the large primes that are the only 

factors for a large number is hard

 The larger the primes, the harder it is to factor

 Fun fact: the largest known prime is 277,232,917 − 1

 It has 23,249,425 digits
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RSA: Digital Signatures

 Encryption and decryption are inverses of each other

 If something is encrypted with the private key, 

it can be decrypted with the public key

 What does this allow us to do?

 State “only this person could have encrypted this”

 This is part of something called a digital signature, and is 

meant to prove the message came from a specific individual

 Digital signatures are more complex than just this; 

we’ll discuss the details next time
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(Pseudo)-Random Number Generation

 rand() is not an acceptable (pseudo) random number 

generator for anything that has an actual purpose

 If you want something statistically viable, you need to use an 

actually good pseudorandom number generator (PRNG)

 If you’re going to use the numbers for security-related 

purposes, use a cryptographically secure pseudorandom 

number generator (CSPRNG)
 If you don’t know if it’s a CSPRNG, it probably isn’t
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Quantum Computing

 If a sufficiently large quantum computer is ever built:

 RSA and Diffie-Hellman are completely broken by 

an algorithm called Shor’s algorithm

 The bit length of symmetric ciphers is effectively halved
 If it would previously require 2128 computations to crack something, 

it would only require 264 quantum computations
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Announcements

 Lab 2 is due Thursday night

 Paper 1 will be coming out soon

 Exams are graded and available for pickup


