
CMSC 426 Computer Security Spring 2018

Needham-Schroeder, Kerberos, and Quantum Computing

Summary

A brief introduction to the Needham-Schroeder Protocols, Kerberos, and Quantum
Computing.

The Needham-Schroeder Protocols

1978 - Roger Needham and Michael Schroeder at Xerox Palo Alto Research Center
(PARC) publish Using Encryption for Authentication in Large Networks of Computers.

Protocols for authentication in large networks using either symmetric key (e.g. block or
stream ciphers) or asymmetric key (public key — RSA, etc.). We will only discuss the
symmetric key protocol.

Central to the protocol is a trusted Authentication Server (AS). The AS manages a set
of users and knows each user’s Secret Key. The secret key is typically derived from a
user password — the AS knows the derived key, not the password itself.

Notation: we will use E(X; K) to denote the encryption of X using key K. Think of the
encryption algorithm as AES (in 1978 it would have been DES). If we need to specify a
specific key, e.g. the key belonging to Alice, we will use subscripts: KA.

Suppose Alice (A) wants to access a service run by Bob (B) and both Alice and Bob are
managed by the same authentication server (AS) so that AS knows the secret keys for
Alice and Bob, KA and KB. First Alice carries out an exchange with the AS:

1. Alice sends her identity, Bob’s identity, and a nonce to AS:
A —> AS: (A, B, IA)

2. The AS randomly generates a conversation key KA,B for Alice and Bob to use in
their communication.

3. The AS sends the following
AS —> Alice: E(IA || B || KA,B || E(KA,B || A; KB); KA)

4. Alice uses her key to remove the outer encryption, producing IA, B, KA,B, and T =
E(KA,B || A; KB). She checks that the value of IA returned by the server matches
what she sent in her message (this prevents a server replay attack).

At this point, Alice has the conversation key KA,B that she will use to encrypt her
messages to Bob as well as T = E(KA,B || A; KB); the value T is called a ticket in
Kerberos. Now Alice can initiate communication with Bob:

1. Alice sends Bob the ticket T:
Alice —> Bob: E(KA,B || A; KB)

� of �1 6

CMSC 426 Computer Security Spring 2018

2. Bob knows his own secret key KB, so he can decrypt the ticket and extract A and
KA,B. He checks that A from the ticket matches the identity of Alice.

So now both Alice and Bob know the conversation key KA,B, so they can use it to
encrypt whatever data they wish to exchange.

Since Alice sent the ticket to Bob, she has confidence that only she and Bob know KA,B.
Therefore, any data she receives from Bob that decrypts correctly using the
conversation key must actually be from Bob.

The situation is not as good for Bob. Unless Bob keeps a record of all conversation
keys he has ever used to talk to Alice, he can’t be sure that the ticket hasn’t been
replayed — that is, he doesn’t know for sure that someone hasn’t sniffed a ticket from
the network in the past only to replay it now. This can be remedied with one additional
exchange of information:

3. Bob sends Alice a nonce encrypted with the conversation key:
Bob —> Alice: E(IB; KA,B)

4. Alice responds with a small modification of IB, say subtracting one, also
encrypted with the conversation key:

Alice —> Bob: E(IB - 1; KA,B)

Bob can decrypt the value sent by Alice, to see that it really is the encryption of IB - 1;
this assures him that Alice really does know the conversation key and that the ticket was
not simply replayed.

The paper of Needham and Schroeder goes on to describe a similar algorithm using
public key cryptography; how to support multiple authentication servers; support for
one-way communication (email); and support of signatures by the AS.

Kerberos

The protocols of Needham and Schroeder are the basis for Kerberos, a system for
managing access to distributed resources that was developed at MIT in the 1980s.

Microsoft’s Active Directory is based on Kerberos.

A main difference between the basic Needham-Schroeder protocol and Kerberos is the
addition of a Ticket Granting Server (TGS) — rather than having the AS manage all
access to other computers, the AS issues a Ticket Granting Ticket, which the client can
deliver to the TGS to be given access to other resources (file servers, etc.). The initial
exchange between Alice and the AS, Alice will request access to the TGS and will
receive a TGT (ticket for the TGS):

AS —> Alice: E(IA || TGS || KA,TGS || E(KA,TGS || A || STIME || EXPIRE || CS; KTGS); KA)

� of �2 6

CMSC 426 Computer Security Spring 2018

Note the addition of a start time (STIME) and expiration date and time (EXPIRE) in the
TGT. A checksum (CS) may also be included. This will allow the client (Alice), to reuse
the TGT for some period of time to gain access to other network resources via a request
to the TGS.

Kerberos also uses a different protocol to authenticate the client (Alice) to the TGT. The
client initiates the authentication protocol:

1. Alice sends the ticket and an Authenticator:
Alice —> Server: TGT, E(A || SYSTIME || SYSNAME || CNTR; KA,TGS)

2. The TGS decrypts and validates the TGT; the Authenticator is decrypted using
the session key extracted from the TGT and the TGS checks that the SYSTIME
is “close” to its system time and that the SYSNAME matches Alice’s system
name.

Now that Alice and the TGS have a session key and the client is authenticated, Alice
can send requests for access to other servers to the TGS. Suppose Alice wants access
to a service provided to Bob. She sends a request to the TGS that is just like her initial
request to the AS, but with “B” instead of “TGS”. The TGS must check that the
checksum CS is correct. If the request is valid, the TGS generates a ticket for the
requested service (Bob) and returns it to the client (Alice). Alice may now use the ticket
to gain access to services hosted by Bob.

Quantum Computing

Quantum computers are good at breaking public key systems — this is not because
they “try all keys at once.” Even if they could do that, how would you know which key
was the right key?

The reason quantum computers are good at breaking public key systems is because
they have mathematical structure that just happens to make them susceptible to
quantum algorithms, especially Shor’s Algorithm.

Shor’s algorithm uses the Quantum Fourier Transform (QFT); Fourier Transforms
should be familiar to the Computer Engineers and maybe the mathematicians. They
are used to extract information about periodicity (frequency) from data. Well, they’re
used for a lot of other things, too, but that’s a common use.

We can apply this to RSA. Recall that N = pq and Euler’s totient function is phi(N) =
(p-1)(q-1). There is a Theorem due to Euler that tell us that if x is a number between 0
and N that is not divisible by p or q, then the period of x divides the totient.

� of �3 6

CMSC 426 Computer Security Spring 2018

We can do some small examples of the Fourier Transform. I'm using the Sage math
package. In this first example, we compute the powers of x = 2 mod N = 15, print the
sequence of powers, and plot the Discrete Fourier Transform (DFT). Looking at the
sequence, we can observe that the period of x is four, and in the DFT we see a good-
size spike a the value four.

� of �4 6

In [82]: # Compute DFT of x^i mod N
try x = 2, x = 7, x = 8

x = 2
N = 3*5 #phi(N) = 8

Construct Indexed Sequence and compute DFT
J = range(N)
A = [ZZ(x^i % N) for i in J]
s = IndexedSequence(A, J)
t = s.dft()

Print the data and plot the real part of the DFT

print(A)
tr = [real_part(i) for i in t.list()]
TR = IndexedSequence(tr, J)
TR.plot()

[1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4]

Out[82]:

CMSC 426 Computer Security Spring 2018

The second example is similar, but with x = 9 and N = 35. We can see from the
sequence of powers that x has period six and there is a dominant spike in the DFT at
six.

� of �5 6

In [83]: # Try x = 3, x = 4, x = 9
x = 9
N = 5*7 # phi(N) = 24

J = range(N)
A = [ZZ(x^i % N) for i in J]
s = IndexedSequence(A, J)
t = s.dft()

print(A)
tr = [real_part(i) for i in t.list()]
TR = IndexedSequence(tr, J)
TR.plot()

[1, 9, 11, 29, 16, 4, 1, 9, 11, 29, 16, 4, 1, 9, 11, 29, 16, 4, 1, 9
, 11, 29, 16, 4, 1, 9, 11, 29, 16, 4, 1, 9, 11, 29, 16]

Out[83]:

CMSC 426 Computer Security Spring 2018

So, if we could determine the periods mod N for a bunch of different x’s, say x1, x2, …,
then we would learn about lots of divisors of 𝜙(N) = (p-1)(q-1), which we could ultimately
piece together to determine 𝜙(N) itself. Well, that’s as good as breaking RSA. Why?
Suppose we can determine 𝜙(N). Then

𝜙(N) = pq - p - q + 1 = (pq + 1) - (p + q) = (N + 1) - (p + q)

(N + 1) - 𝜙(N) = p + q, which gives q = (N + 1) - 𝜙(N) - p

N = pq = p((N + 1) - 𝜙(N) - p) = -p2 + ((N + 1) - 𝜙(N)) p

This gives a quadratic equation in p with known coefficients:

-p2 + ((N + 1) - 𝜙(N)) p - N = 0

We can solve this quadratic to find p (and thus q). So the question of breaking RSA is
reduced to the question of finding the periods of numbers mod N, which is exactly what
the QFT is good at!

The quantum magic creates a superposition of states which are the powers of x mod N;
the QFT finds the period of this data; repeat for a different value of x until you have
enough information to determine 𝜙(N).

One thing that quantum computers are not particularly good at is finding keys for
symmetric algorithms such as AES. With known algorithms, a quantum computer would
reduce the work for a brute-force attack on AES to the square-root of the key space
size. So, the work to break 256-bit AES would be 128 bits, or 2128 computations, which
is still huge.

This all brings us back to Kerberos: if a quantum computer were built tomorrow,
Kerberos using 256-bit AES would still be secure, but PKC-based systems (RSA, Diffie-
Hellman) would not. Kerberos looks a bit old-fashioned, but it’s good to keep around!

References

Roger Needham and Michael Schroeder, Using Encryption for Authentication in Large
Networks of Computers, http://dl.acm.org/citation.cfm?doid=359657.359659

RFC 3961, Encryption and Checksum Specification, http://www.ietf.org/rfc/rfc3961.txt

RFC 4120, Kerberos V5, http://www.ietf.org/rfc/rfc4120.txt

Scott Aaronson, Shor, I’ll do it, http://www.scottaaronson.com/blog/?p=208

� of �6 6

http://dl.acm.org/citation.cfm?doid=359657.359659
http://www.ietf.org/rfc/rfc3961.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.scottaaronson.com/blog/?p=208

